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Curvlinear Effects of Observed Variables 

Consider the data set in Table 1.  The scatterplot for the variables X and Y is presented in Figure 

1, and it clearly shows that the relation between these variables is curvilinear.  Specifically, it is 

quadratic because scores on Y decline and then rise as scores on X increase.  Regressing Y on X 

yields a near-zero Pearson correlation of −.048 and the unstandardized regression equation 

presented next and also illustrated in Figure 1: 

ˆ .023 10.495Y X= − +  

This regression equation has poor fit because it reflects only the linear aspect of the relation 

between X and Y, which is slight for these data.  To also represent the quadratic trend, all that is 

needed is to create the power term X
 2
 and then regress Y on both X and X

 2
.  The presence of X

 2
 

in the equation adds one bend to the regression line, and its unstandardized regression coefficient 

indicates the degree of the quadratic aspect of X’s relation to Y, controlling for the linear effect.  

The multiple regression coefficient with both X and X
 2
 in the equation for the data in Table 1 is 

.927, and the unstandardized equation for the quadratic regression curve presented next and also 

depicted in Figure 1 clearly fits the data better than the linear prediction equation: 

2ˆ .083 2.714 29.486Y X X= − +  

---------------------------------- 

Insert Table 1 about here 

---------------------------------- 

Even higher-order curvilinear relations can be represented with the appropriate power 



2 

 

term.  For example, the term X
 3

 represents the cubic relation of X to Y (assuming that X and X
 2
 

are also in the equation), and so on.  However, it is rarely necessary to estimate curvilinear 

relations beyond a quadratic one in behavioral data.  Note that standardized regression 

coefficients (beta weights) do not have the standard interpretation for power terms.  Some 

authors, such as J. Cohen, J., P. Cohen, West, and Aiken (2003), suggest that researcher should 

consider instead whether adding the power term to the equation results in an appreciable increase 

in the overall R
2
. 

---------------------------------- 

Insert Figure 1 about here 

---------------------------------- 

Centering 

A problem that can occur when analyzing power terms that represent curvilinear effects is 

extreme collinearity.  This is because correlations between product terms and their constituent 

variables can be so high that the analysis can fail or the results are unstable.  For example, the 

Pearson correlation between the power term X
 2
 and the original variable X is .986 for the data set 

in Table 1.  One way to address this problem is to center the original variables before calculating 

product terms based on them.  For example, the correlation between variables X and X
 2

 after 

centering the former before creating the latter for the data in Table 1 is practically zero (r = 

.016), much lower than for the original (uncentered) scores (.986). 

Representation in Path Models 

Curvilinear effects of observed variables are represented in path models with the appropriate 

product terms and all constituent variables.  Consider the path model in Figure 2.  This model 

depicts X and the power term X
 2

 as exogenous variables and Y as endogenous.  The unanalyzed 
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association between the two exogenous variables in the figure accounts for any correlation 

between variable X and the power term X
 2
.  The unstandardized path coefficient for the path 

X → Y estimates the linear effect of X, and the unstandardized coefficient for the path X
 2
 → Y 

estimates the quadratic effect of X, each controlling for the other effect. 

---------------------------------- 

Insert Figure 2 about here 

---------------------------------- 

Curvilinear Effects of Latent Variables 

In the indicant product approach in SEM, power terms are specified as multiple indicators of 

latent variables that represent curvilinear effects.  Consider the standard structural-regression 

(SR) model in Figure 3(a).  The path A → Y represents the linear effect of latent variable A on 

the observed endogenous variable Y.  (The rationale outlined here also applies to the use of 

multiple indicators to measure an endogenous construct.)  The measurement model for the 

indicators of factor A can be represented with the following structural equations: 

 1X  = 1A E+  (1) 

2X  = 2 2λ A E+   

where the loading of X1 is fixed to 1.0 scale the factor and the loading of X2 is a free parameter 

represented by the term 2λ .  The only other parameters of this model are the variances of A and 

the error terms, E1 and E2.  We assume next that the latent variables just mentioned are all 

independent with means of zero (i.e., they are in mean-deviated form). 
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---------------------------------- 

Insert Figure 3 about here 

---------------------------------- 

Suppose that a researcher wished to estimate the quadratic effect of factor A on Y.  This 

calls for adding to the model of Figure 3(a) the latent product variable A
2
 that represents this 

effect, which is estimated by the coefficient for the path A
2
 → Y.  Like its linear counterpart, A

2
 

is a latent variable measured indirectly only through its indicators.  The indicators of A
2
 are the 

product indicators 

2

1X , 2

2X , and 1 2X X  

Note that the term 1 2X X  does not here represent an interactive effect because its components, X1 

and X2, are specified to measure the same factor.  By squaring or taking the product of the 

corresponding expressions in Equation 1, the equations of the measurement model for the 

product indicators are 

2

1X  = 2 2

1 12A AE E+ +  (2) 

2

2X  = 2 2 2

2 2 2 2λ 2λA AE E+ +   

1 2X X  = 2 2 2 2

2 2 1 2 1 2λ λA AE AE E E+ + +   

These equations (2) show that the product indicators actually load on a total of six different latent 

product variables, including 

A
2
,  AE1,  AE2, 

2

1E , 2

1E , and 1 2E E  

The latter three terms just listed are the residual terms for the product indicators.  Note that all 

the factor loadings of the measurement model for the product indicators are either constants or 

functions of 2λ , the loading of the X2 on factor A.  For example, the loading of 2

1X  on factor AE1 
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equals 2.0, and the loading of 2

2X  on factor A
2
 equals 2

2λ .  Thus, no new factor loadings need to 

be estimated for the product indicators. 

The other parameters of the measurement model for the product indicators are the 

variances and covariances of the six latent product variables implied by Equation 2.  Assuming 

normal distributions for the nonproduct latent variables A, E1, and E2, it can be shown that the six 

latent product terms in Equation 2 and factor A are all mutually uncorrelated (i.e., their 

covariances are zero; see Kenny & Judd, 1984, pp. 210).  Under the same assumption, it also true 

that the variances of the latent product terms in Equation 2 can be expressed as functions of the 

variances of the nonproduct latent variables A, E1, and E2 as follows: 

 
2

2 2 2σ 2(σ )
AA

=  
1 2 1 2

2 2 2σ σ σ
E E E E

=  (3) 

 
2

11

2 2 2σ 2(σ )
EE

=  
1 1

2 2 2σ σ σ
AE A E

=   

 
2

22

2 2 2σ 2(σ )
EE

=  
2 2

2 2 2σ σ σ
AE A E

=   

For example, the variance of the latent product term A
2
 equals two times the squared variance of 

factor A, and the variance of the term 1 2E E  equals the product of the measurement error 

variances for the nonproduct indicators X1 and X2.  Thus, no new variances need to be estimated.  

This means that the parameters of the measurement model for the product indicators implied by 

Equations 2 and 3 are theoretically identified, given all of the assumptions stated to this point.  

Presented in Figure 3(b) is the whole SR model that includes the measurement model for the 

nonproduct indicators of A, the measurement model for the product indicators of A
2
, and the 

structural model for predicting Y.  The coefficient for the path A
2
 → Y estimates the latent 

quadratic effect. 

Estimation with the Kenny-Judd Method 
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Application of the Kenny-Judd method (Kenny & Judd, 1984) to estimate a latent quadratic 

effect is demonstrated next.  I fitted with Mplus 5.2 the model of Figure 3(b) to the covariance 

matrix generated by Kenny and Judd (1984) for a hypothetical sample of 500 cases that is 

presented in Table 2.  Because Kenny and Judd (1984) used a generalized least squares (GLS) 

estimator in their original analysis of these data, I specified the same estimator in this analysis 

with Mplus.  Presented in Appendix A is Mplus syntax that specifies the model, data, and all 

constraints of the Kenny-Judd method for this example.  In order to apply nonlinear constraints 

in Mplus, it is generally necessary to label in syntax the corresponding parameters.  Next, the 

relevant constraints are listed under the “Model Constraints” heading of the command file.  With 

a total of 6 observed variables (Y, X1, X2, and three product indicators), there are a total of 6(7)/2, 

or 21 observations available for the analysis.  There are a total of 7 free parameters, including 

1. 3 variances (of A, E1, and E2) and 1 factor loading (A → X2) for the measurement model of 

the nonproduct indicators; and  

2. 2 directs on Y (A → Y, A
2
 → Y) and 1 disturbance variance of Y for the structural model. 

There are no free parameters for the measurement model of the product indicators, so dfM = 14. 

---------------------------------- 

Insert Table 2 about here 

---------------------------------- 

Estimation in Mplus converged to an admissible solution.  Values of selected fit statistics 

presented next indicate satisfactory overall fit of the model to the data; the 90% confidence 

interval for the RMSEA is reported in parentheses: 

2

Mχ (14) = 18.418, p = .188 

RMSEA = .025 (0–.053), pclose-fit H0
 = .924 
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CFI = .994; SRMR = .039 

Reported in Table 3 are the GLS estimates of the free parameters for the model in Figure 3(b).  

These results are very similar to those reported by Kenny and Judd (1984) in their original 

analysis.  The linear and quadratic effects of factor A together explain 73.4% of the total variance 

in Y.  The form of the functional relation between Y and A is 

  Ŷ  = .247 A − .500 A
2
  (4) 

where the weights are the unstandardized path coefficients.  The equation just presented 

describes an inverted parabola concerning the relation between A and Y.  You can create a visual 

plot of this relation using a general parabola equation plotter that is freely available over the 

Internet.
1
  A screenshot of the parabola generated by the plotter on the site listed in the footnote 

for Equation 4 is presented in Figure 4. 

---------------------------------- 

Insert Table 3 about here 

---------------------------------- 

See Marsh, Wen, and Hau (2006) for descriptions of alternative methods to estimate 

curvilinear effects of latent variables.  These same methods can also be applied to the analysis of 

interactive effects of latent variables.  A computationally simpler version of Klein and 

Moosbrugger’s (2000) latent moderated structural equations (LMS) method, which does not 

require nonlinear constraints or the creation of power terms, is incorporated in Mplus 5.2 with 

special compact syntax for analyzing models with latent curvilinear or interactive effects (Klein 

and Muthén, 2007). 

                                                
1
sasked.gov.sk.ca/docs/math30/conics/conics/laboratory/parABC.html 
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---------------------------------- 

Insert Figure 4 about here 

---------------------------------- 
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Appendix A 

Mplus Syntax for Estimation of the Model in Figure 3(b) with the Data in Table 2 

Input file 

TITLE:  Kenny-Judd for latent quadratic effect 

 DATA: 

  FILE IS "quadratic-kenny-judd-mplus.dat"; TYPE IS COVARIANCE; 

  NGROUPS = 1; NOBSERVATIONS = 500; 

VARIABLE: 

  NAMES ARE x1 x2 x12 x22 x1x2 y; 

ANALYSIS: 

  TYPE IS GENERAL; ESTIMATOR = GLS; 

MODEL: 

 ! measurement model 

   ! parameters for nonproduct indicators 

   ! V is for variance, L for loading 

     A (V_A); 

     x1 (V_E1); 

     x2 (V_E2); 

     A BY x1 

          x2 (L_x2); 

   ! parameters for product indicators 

     A2 (V_A2); 

     x12 (V_Ex12); 

     x22 (V_Ex22); 

     x1x2 (V_Ex1x2); 
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     A2 BY x12 ! fixed to 1 by default 

         x22 (L_x22_A2)  

         x1x2 (Lx1x2A2); 

     AE1 (V_AE1); 

     AE1 BY x12@2 ! fixed to 2 

            x1x2 (Lx1x2AE1); 

     AE2 (V_AE2); 

     AE2 BY x1x2 ! fixed to 1 by default 

            x22 (Lx22AE2); 

   ! fix all factor covariances to zero 

     A with A2@0; A with AE1@0; 

     A with AE2@0; A2 with AE1@0; 

     A2 with AE2@0; AE1 with AE2@0; 

 ! structural model 

   y ON A A2; 

MODEL CONSTRAINT: 

 ! variance constraints for product factors 

   V_A2 = 2 * V_A**2; 

   V_Ex12 = 2 * V_E1**2; 

   V_Ex22 = 2 * V_E2**2; 

   V_Ex1x2 = V_E1 * V_E2; 

   V_AE1 = V_A * V_E1; 

   V_AE2 = V_A * V_E2; 

 ! loading constraints for product indicators 

 ! not already fixed to equal a constant 
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   L_x22_A2 = L_x2**2; 

   Lx1x2A2 = L_x2; 

   Lx1x2AE1 = L_x2; 

   Lx22AE2 = 2 * L_x2; 

 OUTPUT:  SAMPSTAT RESIDUAL STDYX; 

Contents of file “quadratic-kenny-judd-mplus.dat”   

1.150            

 .617  .981 

-.068 -.025  2.708 

 .075  .159   .729 1.717 

 .063  .065  1.459 1.142 1.484 

 .256  .166 -1.017 -.340 -.610 .763 
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TABLE 1.  Data Set for a Quadratic Effect of Observed Variables 

 

 Predictors 

 

Criterion 

 

Case X X
 2
 Y 

 

  A   7   49 14 

  B 10 100 11 

  C 13 169   9 

  D 15 225   9 

  E 17 289   5 

  F 19 361   8 

  G 23 529 11 

  H 25 625 14 
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TABLE 2.  Input Data (Covariances) for Analysis of a Model with a Quadratic Effect of a 

Latent Variable 

 

Variable 1 2 3 4 5 6 

 

1.  X1 1.150      

2.  X2 .617 .981     

3. 2

1X  −.068 −.025 2.708    

4. 2

2X  .075 .159 .729 1.717   

5.  X1 X2 .063 .065 1.459 1.142 1.484  

6.  Y .256 .166 −1.017 −.340 .610 .763 

 

Note.  These data for a hypothetical sample are from Kenny and 

Judd (1984, p. 204); N = 500. 

 



14 

 

TABLE 3.  Generalized Least Squares Estimates for a Model with a Quadratic Effect of a 

Latent Variable 

 

Parameter Unstandardized SE Standardized 

 

Loadings 

  A → X1  1.000
a
 —   .928 

  A → X2   .624 .025   .645 

Variances 

  A   .989 .045 1.000 

  E1   .160 .033   .860 

  E2   .540 .019   .417 

  DY   .199 .036   .266 

Direct effects 

  A → Y   .247 .028   .284 

  A
2
 → Y −.500 .037 −.808 

 

Note.  Standardized estimates for error terms are 

proportions of unexplained variance. 

a
Not tested for statistical significance.  For all other 

unstandardized estimates, p < .01. 
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FIGURE 1.  Scatterplot for data set (a) in Table 12.1 with the linear and curvilinear (quadratic) 

regression lines. 
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FIGURE 2.  Path model  with terms that represents the linear and quadratic effects of 

variable X. 
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FIGURE 3.  (a) A model with a linear effect of latent variable A only.  (b) The corresponding 

model with linear and quadratic effects of latent variable A. 

 (a) Linear effect only 

1 

Y 

DY 

1 

X1 

E1 

1 

X2 

E2 

 A 

1 λ2 

 (b) Linear and quadratic effects 

1 

Y 

DY 

1 

X1 

E1 

1 

X2 

E2 

 A 

1 λ2 

2

1
X

1 

2

1
E

2

2
X

1 
2

2
E

X1 X2 
1 

E1 E2 

1 

2λ2 
AE2 

2 
AE1 

λ2 

A
2 

1 

2

2λ  

λ2 



18 

 

 

FIGURE 4.  Plot of Equation 4 for the model in Figure 3(b) estimated with the data in  

Table 2.   


