Home » Supplementary Materials for Principles and Practice of Structural Equation Modeling: Third Edition » Principles and Practice of Structural Equation Modeling: Third Edition


Principles and Practice of Structural Equation Modeling: Third Edition
Rex B. Kline


Computer Syntax, Data, and Output Files

Download all files: PrinPracSEM3ComputerFiles.zip
(Note: requires an unzip utility such as WinZip)


Chapter 7. Estimation

Detailed example: Recursive path model of causes and effects of positive teacher-pupil interactions (Sava (2002), Figure 7.1, Table 7.1)

Syntax Data Output
EQS sava-eqs.eqs - sava-eqs.out
LISREL sava-lisrel.spl - sava-lisrel.out
Mplus sava-mplus.inp sava-mplus.dat sava-mplus.out

Brief example with a start value problem: Nonrecursive path model of mother-child adjustment problems (Cooperman (1996), Figure 7.2, Table 7.6)

Syntax Data Output
EQS cooperman-eqs.eqs - cooperman-eqs.out
LISREL cooperman-lisrel.spl - cooperman-lisrel.out

Chapter 8. Hypothesis testing

Detailed example: Recursive path model of illness factors (Roth et al. (1989), Figure 8.1, Table 3.4)

Syntax Data Output
EQS roth-eqs.eqs - roth-eqs.out
LISREL roth-lisrel.spl - roth-lisrel.out
Mplus roth-mplus.inp roth-mplus.dat roth-mplus.out

Chapter 9. Measurement models and CFA

Detailed example: Two-factor model of the KABC-I (Kaufman and Kaufman (1983), Figure 9.1, Table 9.1)

Syntax Data Output
EQS kabc-cfa-eqs.eqs - kabc-cfa-eqs.out
LISREL kabc-cfa-lisrel.spl - kabc-cfa-lisrel.out
Mplus kabc-cfa-mplus.inp kabc-cfa-mplus.dat kabc-cfa-mplus.out

Measurement invariance example: Two-factor model of family-of-origin experiences and marital adjustment (Sabatelli & Bartle-Haring (2003), Figure 9.7, Table 9.8)

Syntax Data Output
EQS sabatelli-eqs.eqs - sabatelli-eqs.out
LISREL sabatelli-lisrel.spl - sabatelli-lisrel.out
Mplus sabatelli-mplus.inp sabatelli-mplus.dat sabatelli-mplus.out

Chapter 10. Structural Regression Models

Detailed example: Structural regression model of thought strategies and job satisfaction (Houghton & Jinkerson (2007), Figure 10.2, Table 10.1)

CFA model

Syntax Data Output
EQS houghton-cfa-eqs.eqs - houghton-cfa-eqs.out
LISREL houghton-cfa-lisrel.eqs - houghton-cfa-lisrel.out
Mplus houghton-cfa-mplus.inp houghton-mplus.dat houghton-cfa-mplus.out

SR model

Syntax Data Output
EQS houghton-sr-eqs.eqs - houghton-sr-eqs.out
LISREL houghton-sr-lisrel.eqs - houghton-sr-lisrel.out
Mplus houghton-sr-mplus.inp houghton-mplus.dat houghton-sr-mplus.out

Structural regression model of acculturation and mental health status (Shen & Takeuchi (2001), Figure 10.5, Table 10.5)

Syntax Data Output
EQS shen-eqs.eqs - shen-eqs.out
LISREL shen-lisrel.spl - shen-lisrel.out

Structural regression model of risk as a latent composite (Worland (1984), Figure 10.7, Table 10.6)

Syntax Data Output
EQS worland-eqs.eqs - worland-eqs.out

Chapter 11. Mean Structures and Latent Growth Models

Latent growth model of change in alcohol use (Duncan & Duncan (1996), Figure 11.2, Table 11.2)

Syntax Data Output
EQS duncan-change-eqs.eqs - duncan-change-eqs.out
Mplus duncan-change-mplus.inp duncan-mplus.dat duncan-change-mplus.out

Latent growth model of prediction in change in alcohol use (Duncan & Duncan (1996), Figure 11.2, Table 11.2)

Syntax Data Output
EQS duncan-prediction-eqs.eqs - duncan-prediction-eqs.out
Mplus duncan-prediction-mplus.inp duncan-mplus.dat duncan-prediction-mplus.out

Measurement model of family-of-origin experiences and marital adjustment with means (Sabatelli & Bartle-Haring (2003), Figure 11.4, Table 9.8)

Syntax Data Output
EQS sabatelli-means-eqs.eqs - sabatelli-means-eqs.out
LISREL sabatelli-means-lisrel.eqs - sabatelli-means-lisrel.out
Mplus sabatelli-means-mplus.inp sabatelli-means-mplus.dat sabatelli-means-mplus.out

MIMIC model of family-of-origin experiences and marital adjustment (Sabatelli & Bartle-Haring (2003), Figure 11.5, Table 11.10)

Syntax Data Output
LISREL sabatelli-mimic-lisrel.spl - sabatelli-mimic-lisrel.out
Mplus sabatelli-mimic-mplus.inp sabatelli-mimic-mplus.dat sabatelli-mimic-mplus.out

Chapter 12. Interaction Effects and Multilevel SEM

Estimating curvilinear effects in SEM

Analysis of an interactive effect of latent variables with the Kenny-Judd method (Kenny & Judd (1984), Figure 12.5, Table 12.3)

Syntax Data Output
Mplus interaction-kenny-judd-mplus.inp interaction-kenny-judd-mplus.dat interaction-kenny-judd-mplus.out

Analysis of a quadratice effect of a latent variable with the Kenny-Judd method. Supplemental example:

Syntax Data Output
Mplus quadratic-kenny-judd-mplus.inp quadratic-kenny-judd-mplus.dat quadratic-kenny-judd-mplus.out
X
Save 15% + Free Shipping on Online Orders!

Guilford Press

Save 15%: Free Shipping:
For bulk orders, please contact: info@guilford.com
X
**enlarged_cover**