
Exploratory Factor Analysis Using SAS 

In this document I explain how to use SAS to run exploratory factor analyses. 

The data from this study are based on the Attitudes toward Scientists data from chapter 12 
in the text. These data represent scores of 1974 respondents on the nine items shown on 
page 311 of the text and on the last page of this document. The data are in the file 

“Scientist. sas7bdat.” 

In SAS, factor and component analysis are obtained through proc factor. The default 
extraction method is principal components analysis; to obtain factor analysis results an 

extraction method keyword such as uls, gls, ml, or prinit must be specified.  

proc factor data=Chap12.scientist   corr   residuals method=prinit   priors=smc 
nfactors=2   msa   rotate=oblimin   plot=scree;  

var alone better boring nofun good help odd norelign nointrst; 
run; 

Prinit stands for iterated principal factors. This specification, combined with the 
specification priors=smc, yields the principal factors procedure described in the text. The 
specification priors=smc indicates that squared multiple correlations should be used for 
the initial communalities. These are then iterated in the iterated principal factors procedure. 

The specification corr causes the correlation matrix to be printed in the output. 

Residuals causes the residual correlation matrix to be printed. 

Nfactors=2 specifies that 2 factors should be extracted. 

MSA causes the Kaiser-Meyer-Olkin (KMO) measure of sampling adequacy to be printed. 

Rotate=oblimin specifies an oblique oblimin rotation. Other rotation options can be found 
in the SAS help and documentation, and include varimax, quaritmax, promax, and 
quartimax. 

Plot=scree causes the scree plot to be printed. 

Running the SAS syntax above produces a great deal of output. In the sections below, I 
discuss selected tables. 
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The first part of the output is the matrix of correlations among the variables: 
 

 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 

 

Although there are several pairs of variables with moderate correlations, it is difficult to see 
an overall pattern. This is where factor analysis can help us. 
 
Shown below is Kaiser’s Measure of Sampling Adequacy, usually known as the Kaiser-

Meyer-Olkin (KMO) measure of sampling adequacy. SAS provides a measure of sampling 
adequacy (MSA) value for each variable as well as an overall value.  
 
Values range from 0 to 1, with higher values indicating greater amenability to factoring. 

According to Kaiser’s criteria, the overall value of .750 shown below is between “middling” 
and “meritorious.” The “middling” KMO value is not surprising, as correlations among 
variables measured on a four-point Likert scale, as these variables are, will be somewhat 
attenuated in comparison to correlations among variables measured on more continuous 

scales. 
 
 

Kaiser's Measure of Sampling Adequacy: Overall MSA = 0.74997298 

alone better boring nofun good help odd norelign nointrst 

0.78647147 0.67669225 0.76507770 0.82178701 0.68482477 0.70722209 0.76301243 0.80854021 0.75980570 

 

 
The “Eigenvalues of the Reduced Correlation Matrix” are shown in the table below. These 
are the values obtained after extraction of the two specified factors. They are based on the 
reduced correlation matrix with communalities, rather than values of 1, on the diagonal.  

 
The fact that these values were not obtained from the full correlation matrix with ones on 
the diagonal is the reason that the last few eigenvalues are negative. This pattern of 
negative values is typical of a reduced correlation matrix. 

Correlations 

 alone better boring nofun good help odd norelign nointrst 

alone 1.00000 0.07608 0.25161 0.25995 0.03105 -0.00971 0.21595 0.09581 0.35120 

better 0.07608 1.00000 -0.13612 0.11342 0.46955 0.42452 0.13778 0.06718 0.12297 

boring 0.25161 -0.13612 1.00000 0.26053 -0.13093 -0.23079 0.30320 0.08997 0.28647 

nofun 0.25995 0.11342 0.26053 1.00000 0.04598 0.00661 0.38832 0.26424 0.45358 

good 0.03105 0.46955 -0.13093 0.04598 1.00000 0.40162 0.02874 0.05136 0.04904 

help -0.00971 0.42452 -0.23079 0.00661 0.40162 1.00000 0.02741 0.04555 0.00594 

odd 0.21595 0.13778 0.30320 0.38832 0.02874 0.02741 1.00000 0.31150 0.50361 

norelign 0.09581 0.06718 0.08997 0.26424 0.05136 0.04555 0.31150 1.00000 0.29177 

nointrst 0.35120 0.12297 0.28647 0.45358 0.04904 0.00594 0.50361 0.29177 1.00000 
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Eigenvalues of the Reduced Correlation Matrix: Total = 

3.29879052  Average = 0.36653228 

 Eigenvalue Difference Proportion Cumulative 

1 1.92364790 0.54803355 0.5831 0.5831 

2 1.37561435 1.20622899 0.4170 1.0001 

3 0.16938536 0.11828951 0.0513 1.0515 

4 0.05109585 0.03137110 0.0155 1.0670 

5 0.01972476 0.02170284 0.0060 1.0730 

6 -.00197809 0.01089331 -0.0006 1.0724 

7 -.01287139 0.07253819 -0.0039 1.0685 

8 -.08540958 0.05500906 -0.0259 1.0426 

9 -.14041864  -0.0426 1.0000 

 
 
The first two eigenvalues are much larger than the others, suggesting that there are 2 
factors in the data. 

 
The proportion of variance accounted for, shown in the third column, is obtained by 
dividing each eigenvalue by the sum of the eigenvalues in the first column (approximately 
3.3). This sum is not 9 (the number of variables) as it would be had the eigenvalues been 

obtained from the full (unreduced) correlation matrix. 
 
The eigenvalues from the reduced matrix represent the shared, rather than the total, 
variance. The proportions in the third column therefore represent the proportion of the 

shared, rather than the total variance accounted for by each factor. Similarly, the 
cumulative values in the last column represent the proportion of cumulative shared 
variance represented by a given number of factors. 
 

The final communalities, based on extraction of two factors, are shown below. The 
variables “alone” and “norelign” have the lowest communality values, consistent with the 
low values of their correlations with the other variables that can be seen in the variable 
correlation matrix. 

 
 

 

Final Communality Estimates: Total = 3.299262 

alone 
better boring nofun good help odd norelign nointrst 

0.17450207 0.50402473 0.27968430 0.37230642 0.40780376 0.40533885 0.44099334 0.14979504 0.56481376 
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The scree plot graphs the eigenvalue for each factor. SAS graphs both the eigenvalues 
(left-hand side) and the variance explained by each factor (right-hand side). The latter 
explained variance values show a similar pattern to the eigenvalues because they are 

simply the eigenvalues divided by their sum, as explained previously. 
 

 
 
The number of factors is determined as the number before the line based on the 
eigenvalues levels off to become relatively straight. I have superimposed a dashed straight 
line along the eigenvalue line beginning at factor 3. Although the dots representing factors 

3 – 9 do not fall directly on the straight line, they are fairly close. However, we may wish to 
examine a 3 factor solution. 
 
One way of determining whether the correct number of factors has been extracted is to 

examine a matrix of residual correlations. These residuals are the differences between the 
observed, or actual, correlations and the correlations reproduced from the factor model 
(see pp.305-306 in the text for an explanation of the calculations for reproduced  
correlations). 

 
If the number of factors extracted is incorrect, the factor model (in our example, a 2-factor 
model) will not be able to reproduce all the correlations sufficiently, and there will be some 
large residuals.  

 
Some researchers use rough rules of thumb based on residual correlations to assess 
whether the number of factors is adequate. For example, if no more than 10% of the 
residuals correlations are greater than .05, the number of factors may be considered 

adequate. 
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A more useful way to use the residual correlations to assess model fit is to examine the 
variable pairs with large residuals in an attempt to determine why the model was unable to 
account for the observed correlation. Examples of this process are provided in Chapter 13 

for confirmatory factor analysis, and the same can be done for exploratory factor analyses. 
 
The reproduced correlations are shown in the off-diagonal and the uniquenesses (1-
communality) are shown on the diagonal. Overall, the residual correlations for the 2-factor 

model are quite small, indicating 2 factors are probably sufficient. 
 
 
 

Residual Correlations With Uniqueness on the Diagonal 

 alone better boring nofun good help odd norelign nointrst 

alone 0.82550 0.01862 0.06646 0.00561 0.01567 0.00272 -0.06073 -0.06318 0.03776 

better 0.01862 0.49598 0.00386 0.00181 0.02045 -0.01434 0.01338 -0.03416 -0.00999 

boring 0.06646 0.00386 0.72032 0.00221 0.03669 -0.03412 0.02343 -0.05842 -0.03377 

nofun 0.00561 0.00181 0.00221 0.62769 -0.00195 -0.00072 -0.01686 0.02970 -0.00497 

good 0.01567 0.02045 0.03669 -0.00195 0.59220 -0.00274 -0.02613 -0.00750 -0.00582 

help 0.00272 -0.01434 -0.03412 -0.00072 -0.00274 0.59466 0.01671 0.01213 0.00110 

odd -0.06073 0.01338 0.02343 -0.01686 -0.02613 0.01671 0.55901 0.05605 0.00459 

norelign -0.06318 -0.03416 -0.05842 0.02970 -0.00750 0.01213 0.05605 0.85020 0.00320 

nointrst 0.03776 -0.00999 -0.03377 -0.00497 -0.00582 0.00110 0.00459 0.00320 0.43519 

 
 
 

The pattern and structure matrices are shown next. Values in the pattern matrix are the 
correlations of the variables with each factor, holding constant or partialing out all other 
factors. For example, the pattern loading of alone with factor 1 is its correlation with factor 
1, holding constant its correlation with factor 2. 
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Rotated Factor Pattern (Standardized Regression Coefficients) 

 Factor1 Factor2 

alone 0.41778 -0.00230 

better 0.12533 0.69591 

boring 0.44834 -0.29102 

nofun 0.60822 0.03666 

good 0.02562 0.63749 

help -0.04092 0.63629 

odd 0.66158 0.04417 

norelign 0.37939 0.06826 

nointrst 0.74966 0.03859 

 

 
Values in the structure matrix are the correlations of the variables with the factors. For 
these coefficients, other factors are not held constant.  
 

In this example, values of the pattern and structure coefficients are very similar. This is 
because of the low (.023) correlation between the 2 factors. This indicates that the factors 
are essentially uncorrelated, so partialing out the other factor has very little effect. 
 

 
 

Factor Structure (Correlations) 

 Factor1 Factor2 

alone 0.41773 0.00733 

better 0.14138 0.69880 

boring 0.44163 -0.28068 

nofun 0.60907 0.05069 

good 0.04033 0.63808 

help -0.02624 0.63535 

odd 0.66260 0.05943 

norelign 0.38097 0.07701 

nointrst 0.75055 0.05588 
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Finally, the factor correlation matrix shows the very low correlation between the 2 factors. 
This suggests that an orthogonal rotation would have been appropriate for these data. 

However, oblique rotations allow the factors to be correlated as much or little as needed, 
so can accommodate both correlated and uncorrelated factors.  
 
 

Inter-Factor Correlations 

 Factor1 Factor2 

Factor1 1.00000 0.02307 

Factor2 0.02307 1.00000 
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Attitudes Toward Scientists items 
 

1. A scientist usually works alone. (ALONE) 

2. Scientific researchers are dedicated people who work for the good of humanity (GOOD) 
3. Scientists don’t get as much fun out of life as other people do. (NOFUN) 
4. Scientists are helping to solve challenging problems. (HELP) 
5. Scientists are apt to be odd and peculiar people. (ODD) 

6. Most scientists want to work on things that will make life better for the average person. 
(BETTER) 

7. Scientists are not likely to be very religious people. (NORELIGN) 
8. Scientists have few interests other than their work. (NOINTRST) 

9. A job as a scientist would be boring. (BORING) 
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