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Exploratory Factor Analysis Using SPSS Syntax
In this document | explain how to use SPSS syntax to run exploratory factor analyses.

The data from this study are based on the Attitudes toward Scientists data from chapter 12
in the text. These data represent scores of 1974 respondents on the nine items shown on
page 311 of the text and on the last page of this document. The data are in the file
“Scientist data.sav.”

In SPSS, factor analysis is conducted through the dimension reduction command. The
basic syntax is shown below.

FACTOR

IVARIABLES ALONE BETTER BORING NOFUN GOOD HELP ODD NORELIGN

NOINTRST

IMISSING LISTWISE

IANALYSIS ALONE BETTER BORING NOFUN GOOD HELP ODD NORELIGN
NOINTRST

IPRINT INITIAL CORRELATION KMO REPR EXTRACTION ROTATION

IFORMAT SORT

IPLOT EIGEN

ICRITERIA FACTORS(2) ITERATE(25)

IEXTRACTION PAF

ICRITERIA ITERATE(25) DELTA(0)

/ROTATION OBLIMIN.

The subcommand MISSING LISTWISE specifies listwise deletion of missing data. This is
the default option, so the command can be omitted.

The ANALYSIS subcommand specifies the variables to be included in the factor analysis.
These need not include all the variables on the VARIABLES subcommand, so the same
set of commands can be used to obtain factor analyses of different sets of variables, if
desired.

The PRINT subcommand specifies that the initial solution, observed correlation matrix,
KMO and Bartlett’s test results, reproduced correlation matrix, and the factors solutions
after factor extraction and after rotation should be printed in the output.

The FORMAT subcommand specifies that the tables of loadings (both pattern and
structure) should be sorted by size, from largest to smallest loadings.

The PLOT subcommand specifies that the scree plot should be printed in the output.

The CRITERIA subcommand specifies the default number of iterations (25) and the default
value of the delta parameter for the oblimin rotation (0).
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The EXTRACTION command specifies the extraction method as Principal Axis Factoring
(PAF), which results in a factor, rather than a component, analysis.

The ROTATION subcommand specifies that oblimin rotation should be used.

The first part of the output is the matrix of correlations among the variables:

Correlation Matrix

ALOME BETTER  BORING  MOFUM GOOD HELFP oDD MORELIGN — MOINTRST

Correlation  ALOME 1.000 076 252 .260 031 -.010 216 096 351
BETTER 076 1.000 - 136 13 470 A25 138 067 123

BORIMG 252 -136 1.000 261 =131 =23 303 080 286

MOFLIN 260 113 261 1.000 046 .0o7 it 264 454

GOooD 03 AT0 -1 046 1.000 A02 029 051 048

HELP -010 425 -.231 007 402 1.000 027 046 008

opD 216 138 303 388 029 027 1.000 311 404

MORELIGMN .0G8 067 .090 264 051 046 A 1.000 292

MOINTRST 35 a23 286 A54 049 006 404 282 1.000

Although there are several pairs of variables with moderate correlations, it is difficult to see
an overall pattern. This is where factor analysis can help us.

Next in the output are Bartlett’'s Test of Sphericity and the Kaiser-Meyer-Olkin (KMO)
index. The KMO ranges from 0 to 1, with higher values indicating greater amenability to
factoring. According to Kaiser’s criteria, the value of .750 shown below is between
“‘middling” and “meritorious.” The “middling” KMO value is not surprising, as correlations
among variables measured on a four-point Likert scale, as these variables are, will be
somewhat attenuated in comparison to correlations among variables measured on more
continuous scales.

The chi-square value associated with Bartlett’s test is statistically significant. This is a test
of the null hypothesis that the correlation matrix is an identity matrix (i.e, that the variables
are all correlated at 0). The fact that this hypothesis is rejected tells us that the correlation
matrix is not an identity matrix, and therefore may be worth factoring. It should be pointed
out, however that a) this test represents a rather low bar, as we would hope that, at the
very least, our variables are correlated at greater than 0 levels, and b) this test is very
powerful, and nearly always results in rejection with a reasonable sample size.

KMO and Bartlett's Test

Kaiser-Meyer-Olkin Measure of Sampling Adequacy. 750
Barlett's Test of Approx. Chi-Square 604,585
Sphericity df 36

Sig. 000




This is a supplementary resource to Measurement Theory and Applications for the Social Sciences, by Deborah L. Bandalos.
Copyright © 2018 by The Guilford Press.

The communalities are shown next. The values in the column labeled “Initial” match those
in Table 12.4 of the text. These are the iterated values described on page 313.
The values in the column labeled “extraction” are those obtained after extracting the 2

specified factors. These values are obtained by squaring the unrotated loading coefficients
and summing these across the 2 factors.

Communalities

Initial Extraction
ALOME 160 A75
BETTER 314 504
BORIMNG 217 280
MOFLUMN 272 372
GOOD 273 408
HELP 259 A05
oDD 337 A4
NORELIGHN 138 150
MOINTRST 387 G645
Extraction Method: Principal Axis

Factoring.

The table below shows the eigenvalues and percentages of explained variance. The latter
values are calculated as the eigenvalue divided by the total number of variables (here, 9)
and multiplied by 100. The values in the column labeled “cumulative %” are obtained by
summing down the “% of variance” column.

As explained in the text (pp. 326-327), values in the set of columns under “Initial
Eigenvalues” are based on the full rather than the reduced correlation matrix. This is
somewhat confusing because factor analyses such as principal axis factoring are based on
the reduced matrix.

Given the confusing nature of the initial eigenvalues, we will simply ignore these values
and concentrate on those under the heading “Extraction Sums of Squared Loadings.” The
two factors account for about 21% and 15% of the variance, respectively, for a total of
nearly 37%. These values are disappointingly small and indicate that much of the variance
in the set of variables is not accounted for by the factors. The low values are likely due, at
least in part, to the coarse nature of the variables’ 1 — 4 Likert scale. Such scales, as noted
previously, attenuate the correlations among the variables relative to what would be
obtained from a more continuous scale.
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The values under the heading “Rotation Sums of Squared Loadings” represent the values
obtained after the 2 factors have been rotated. Because the rotation process spreads the
variances across the factors in a different way than in the unrotated solution, these values
are somewhat different than their unrotated counterparts.

As a final note, the values under the “total” columns in these last two sets are not
eigenvalues, which is why they are not labeled as such. This is because they are
calculated from the reduced correlation matrix, as explained on page 327 of the text. And,
as indicated by note a below the table, the rotation sums of squared loadings cannot be
added together to obtain a total. This is because the values obtained from a rotated
solution overlap, to some extent, due to the correlation among the factors. The overlapping
part of the variance is included in the value of each factor and is thus counted twice. To
illustrate, adding together the values of 1.924 and 1.376 for the unrotated solution yields
3.3, whereas adding together the two values for the rotated solution yields a slightly higher
value of 3.303. The latter value would be higher if the variables were more highly
correlated. However, their correlation is a mere .023.

Total Variance Explained

Rotation
sums of
Sguared
Initial Eigenvalues Extraction Sums of Squared Loadings Loadings®

Factor Total % ofVariance  Cumulative % Total % ofVariance  Cumulative % Total

1 2528 28.0849 28.0849 1.824 21.374 21.374 1.810

2 1.8562 21.6849 49.778 1.376 16.285 36.658 1.3493

3 .a54 10.604 £0.382

4 735 8.168 £8.550

b 668 7.420 75.969

fi 622 £.815 82.885

7 ATT 6.416 89.301

B A12 5.685 54,985

g A5 5015 100.000

Extraction Method: Principal Axis Factoring.
a.When factors are correlated, sums of squared loadings cannot be added to obtain a total variance.

The scree plot is shown below:
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The number of factors is determined as the number before the line based on the
eigenvalues levels off to become relatively straight. | have superimposed a dashed straight
line along the eigenvalue line beginning at factor 3. Although the dots representing factors
3 — 9 do not fall directly on the straight line, they are fairly close. However, we may wish to
examine a 3 factor solution.

One way of determining whether the correct number of factors has been extracted is to
examine a matrix of residual correlations. These residuals are the differences between the
observed, or actual, correlations and the correlations reproduced from the factor model
(see pp.305-306 in the text for an explanation of the calculations for reproduced
correlations).

If the number of factors extracted is incorrect, the factor model (in our example, a 2-factor
model) will not be able to reproduce all the correlations sufficiently, and there will be some
large residuals. In SPSS, the number of residual correlations greater than .05 is printed
below the table.

Some researchers use rough rules of thumb based on residual correlations to assess
whether the number of factors is adequate. For example, if no more than 10% of the

residuals correlations are greater than .05, the number of factors may be considered

adequate.

A more useful way to use the residual correlations to assess model fitis to examine the
variable pairs with large residuals in an attempt to determine why the model was unable to
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account for the observed correlation. Examples of this process are provided in Chapter 13
for confirmatory factor analysis, and the same can be done for exploratory factor analyses.

The reproduced correlations are shown in the top half of the table below and residual
correlations are in the bottom half. To take an example, consider the correlation between
the variables ALONE and BORING.

From the correlation matrix shown previously, we know that the observed correlation
between the two is .252.

The reproduced correlation is .185, so the actual correlation has been underestimated by
.252-.185 =.067 (note that the value for the reproduced correlation is slightly different: this
is because the actual calculations are carried out to more decimal places than those
shown in the table).

Overall, the residual correlations for the 2-factor model are quite small, indicating 2 factors
are probably sufficient.

Reproduced Correlations

ALOMNE BETTER  BORIMNG ~ MOFUM GOOD HELP oDD MORELIGM  MOINTRST
Reproduced Correlation  ALOMNE 1757 057 185 254 014 -0z 277 159 313
BETTER 0&7 5047 -.140 112 449 439 124 A0 133
BORIMG =140 2807 .258 -.168 =187 280 148 320
NOFUN 254 12 .258 3728 .048 .0o7 404 .235 459
GOOD 014 449 -.168 048 4087 404 054 .059 055
HELP -012 439 -197 .0o7 A04 4057 011 .033 005
oDD 277 124 280 405 055 011 4417 255 499
MORELIGN 158 A0 148 235 058 033 255 1509 288
MOINTRST 313 133 320 459 054 008 489 .289 5657
Residual® ALOMNE 019 0BG 008 016 003 -.061 -.063 038
BETTER 013 004 002 020 -014 013 -.034 -.010
BORIMG .004 .00z 037 -.034 023 -.058 -.034
NOFUN 006 .00z .0o2 -.002 -.001 =017 .030 -.008
GOOD 016 020 037 -.002 -.003 -.026 -.008 -.008
HELF .003 -014 -.034 -.001 -.003 017 012 00
oDD -.081 013 023 -7 -.026 07 056 005
MORELIGN -.063 -.034 -.058 030 -.008 012 056 003
MNOINTRST 038 -.010 -.034 -.008 -.006 001 004 .003

Extraction Method: Principal Axis Factaring.
a. Reproduced communalities

b. Residuals are computed hetween ohserved and reproduced correlations. There are 5 (13.0%) nonredundant residuals with absolute values
greaterthan 0.05.

The pattern and structure matrices are shown next. Values in the pattern matrix are the
correlations of the variables with each factor, holding constant or partialing out all other
factors. For example, the pattern loading of NOINTRST with factor 1 its correlation with
factor 1, holding constant its correlation with factor 2.
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Pattern Matrix®

Factor

1 2
MOINTRST 750 039
oDD BE2 .044
MOFUR 608 037
BORING 448 -.291
ALOME A18 -.002
MORELIGH 378 068
BETTER 125 .BYB
GOooD 026 637
HELF -0 636
Extraction Method: Principal Axis

Factaring.
Rotation Method: Ohlimin with
Kaiser Marmalization.

a. Rotation converged in 4
iterations.

Values in the structure matrix are the correlations of the variables with the factors. For
these coefficients, other factors are not partialed out.

In this example, values of the pattern and structure coefficients are very similar. This is

because of the low (.023) correlation between the 2 factors. This indicates that the factors
are essentially uncorrelated, so partialing out the other factor has very little effect.

Structure Matrix

Factor

1 2
MOINTRST 751 056
oDD BE3 .058
MOFLIM 609 051
BORING 442 -.281
ALOMNE 418 007
MORELIGH 381 077
BETTER 41 G498
GOOoD 040 638
HELP -.026 B35
Extraction Method: Principal Axis

Factaring.
Rotation Method: Oblimin with
Kaiser Mormalization.

The factor correlation matrix is shown last in the SPSS output and shows the very low
correlation between the 2 factors.
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Factor Correlation

Matrix
Factor 1 2
1 1.000 023
2 023 1.000

Extraction Method: Principal
Axis Factoring.

Faotation Method: Qhlimin with
Kaiser Mormalization.
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Attitudes Toward Scientists items

A scientist usually works alone. (ALONE)

Scientific researchers are dedicated people who work for the good of humanity (GOOD)
Scientists don’t get as much fun out of life as other people do. (NOFUN)

Scientists are helping to solve challenging problems. (HELP)

Scientists are apt to be odd and peculiar people. (ODD)

Most scientists want to work on things that will make life better for the average person.
(BETTER)

Scientists are not likely to be very religious people. (NORELIGN)

Scientists have few interests other than their work. (NOINTRST)

A job as a scientist would be boring. (BORING)





