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BIVARIATE REGRESSION

Presented in Table R.1 are scores on three continu-
ous variables. Considered next is bivariate regression 
for variables X and Y, but later we deal with the mul-
tiple regression analysis that also includes variable W. 
The unstandardized bivariate regression equation for 
predicting Y from X—also called regressing Y on X—
takes the form

 	 ˆ
X XY B X A= + 	 (R.1)

where Ŷ  refers to predicted scores. Equation R.1 
describes a straight line where BX, the unstandardized 
regression coefficient for predictor X, is the slope of the 
line, and AX is the constant or intercept term, or the 
value of Ŷ , if X = 0. For the data in Table R.1,

	 ˆ 2.479 61.054Y X= +

which says that a 1-point increase in X predicts an 
increase in Y of 2.479 points and that Ŷ  = 61.054, given 

X  =  0. Exercise 1 asks you to calculate these coeffi-
cients for the data in Table R.1.

The predicted scores defined by Equation R.1 make 
up a composite, or a weighted linear combination of 
the predictor and the intercept. The values of BX and 
AX in Equation R.1 are generally estimated with the 
method of ordinary least squares (OLS) so that the 
least squares criterion is satisfied. The latter means 
that the sum of squared residuals, or 2ˆ( )Y YΣ − , is as 
small as possible in a particular sample. Consequently, 
OLS estimation capitalizes on chance variation, which 
implies that values of BX and AX will vary over sam-
ples. As we will see later, capitalization on chance is a 
greater problem in smaller versus larger samples.

Coefficient BX in Equation R.1 is related to the Pear-
son correlation rXY and the standard deviations of X and 
Y as follows:
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	 (R.2)

A formula for rXY is presented later, but for now we can 
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Knowing about regression analysis will help you to learn about SEM. Although the techniques considered 
next analyze observed variables only, their basic principles make up a core part of SEM. This includes the 
dependence of the results on not only what is measured (the data), but also on what is not measured, or omit-
ted relevant variables, a kind of specification error. Some advice: Even if you think that you already know a 
lot about regression, you should nevertheless read this primer carefully. This is because many readers tell me 
that they learned something new after hearing about the issues outlined here. Next I assume that standard 
deviations (SD) for continuous variables are calculated as the square root of the sample variance s2 = SS/df, 
where SS refers to the sum of squared deviations from the mean and the overall degrees of freedom are 
df = N – 1. Standardized scores, or normal deviates, are calculated as z = (X – M)/SD for a continuous 
variable X.
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see in Equation R.2 that BX is just a rearrangement of 
the expression for the covariance between X and Y, or 
covXY = rXYSDXSDY. Thus, BX corresponds to the cova-
riance structure of Equation R.1. Because BX reflects 
the original metrics of X and Y, its value will change if 
the scale of either variable is altered (e.g., X is measured 
in centimeters instead of inches). For the same reason, 
values of BX are not limited to a particular range. For 
example, it may be possible to derive values of BX such 
as –7.50 or 1,225.80, depending on the raw score met-
rics of X and Y. Consequently, a numerical value of BX 
that appears “large” does not necessarily mean that X 
is an important or strong predictor of Y.

The intercept AX of Equation R.1 is related to both 
BX and the means of both variables:

	 AX = MY – BXMX	 (R.3)

The term AX represents the mean structure of Equation 
R.1 because it conveys information about the means 
of both variables (and the regression coefficient) albeit 
with a single number. As stated,  Ŷ  = AX when X = 0, but 
sometimes scores of zero are impossible on certain pre-
dictors (e.g., there is no IQ score of zero in conventional 
standardized metrics for such scores). If so, scores on 
X may be centered, or converted to mean deviations 
x = X – MX, before analyzing the data. (Scores on Y 

are not centered.) Once centered, x = 0 corresponds to a 
score that equals the mean in the original (uncentered) 
scores, or X = MX. When regressing Y on x, the value of 
the intercept Ax equals Ŷ  when x = 0; that is, the inter-
cept is the predicted score on Y when X takes its aver-
age value in the raw data. Although centering generally 
changes the value of the intercept (AX ≠ Ax), centering 
does not affect the value of the unstandardized regres-
sion coefficient (BX = Bx). Exercise 2 asks you to prove 
this point for the data in Table R.1.

Regression residuals, or ˆ( )
0

X Y Y
r − =

, sum to zero and are 
uncorrelated with the predictor, or

	 ˆ( )
0

X Y Y
r − = 	 (R.4)

The equality represented in Equation R.4 is required 
in order for the computer to calculate unique values 
of the regression coefficient and intercept in a par-
ticular sample. Conceptually, assuming indepen-
dence of residuals and predictors, or the regression 
rule (Kenny & Milan, 2012), permits estimation of 
the explanatory power of the latter (e.g., BX for X in 
Equation  R.1) controlling for omitted (unmeasured) 
predictors. Bollen (1989) referred to this assump-
tion as pseudo-isolation of the measured predictor X 
from all other unmeasured predictors of Y. This term 
describes the essence of statistical control where BX is 

TABLE R.1.  Example Data Set for Bivariate Regression 
and Multiple Regression
Case X W Y Case X W Y

A 16 48 100 K 18 50 102

B 14 47   92 L 19 51 115

C 16 45   88 M 16 52   92

D 12 45   95 N 16 52 102

E 18 46   98 O 22 50 104

F 18 46 101 P 12 51   85

G 13 47   97 Q 20 54 118

H 16 48   98 R 14 53 105

I 18 49 110 S 21 52 111

J 22 49 124 T 17 53 122

Note. MX = 16.900, SDX = 3.007; MW = 49.400, SDW = 2.817; MY = 102.950, SDY = 
10.870; rXY = .686, rXW = .272, rWY = .499.
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estimated, assuming that X is unrelated to all possible 
unmeasured predictors of Y.

The predictor and criterion in bivariate regression 
are theoretically interchangeable; that is, it is possible 
to regress Y on X or to regress X on Y in two separate 
analyses. Regressing X on Y would make less sense if X 
were measured before Y or if X is known to cause Y. 
Otherwise, the roles of predictor and criterion are not 
fixed in regression. The unstandardized regression 
equation for regressing X on Y is

	 ˆ
Y YX B Y A= + 	 (R.5)

where the regression coefficient and intercept in Equa-
tion R.5 are defined, respectively as follows:

   Y
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  and  AY = MX – BY MY	 (R.6)

The expression for BY is nothing more than a differ-
ent rearrangement of the same covariance, or covXY = 
rXYSDXSDY, compared with the expression for BX (see 
Equation R.2). For the data in Table R.1, the unstan-
dardized regression equation for predicting X from Y is

	 ˆ .190 2.631X Y= − 	

which says that a 1-point increase in Y predicts an 
increase in X of .190 points and that X̂  = –2.631, given 
Y = 0. Presented in Figure R.1 are the unstandardized 
equations for regressing Y on X and for regressing X 
on Y for the data in Table R.1. In general, the two pos-
sible unstandardized prediction equations in bivariate 
regression are not identical. This is because the Y-on-X 
equation minimizes residuals on Y, but the X-on-Y 
equation minimizes residuals on X.

The equation for regressing Y on X when both vari-
ables are standardized (i.e., their scores are normal 
deviates, z) is

	 ˆ
Y XY Xz r z= 	 (R.7)

where ˆ
Yz  is the predicted standardized score on Y and 

the Pearson correlation rXY is the standardized regres-
sion coefficient. There is no intercept or constant term in 
Equation R.7 because the means of standardized vari-
ables equal zero. (Variances of standardized variables 
are 1.0.) For the data in Table R.1, rXY = .686. Given 
zX = 1.0 and rXY = .686, then ˆ

Yz  = .686 (1.0), or .686; 

FIGURE R.1.  Unstandardized prediction lines for regressing Y on X and for regressing X on Y for the data in 
Table R.1.
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that is, a score one standard deviation above the mean 
on X predicts a score almost seven-tenths of a standard 
deviation above the mean on Y. A standardized regres-
sion coefficient thus equals the expected difference on 
Y in standard deviation units, given an increase on X 
of one full standard deviation. Unlike the unstandard-
ized regression coefficient BX (see Equation R.2), the 
value of the standardized regression coefficient (rXY) is 
unaffected by the scale on either X or Y. It is true that 
(1) rXY = .686 is also the standardized coefficient when 
regressing zX on zY, and (2) the standardized prediction 
equation in this case is ˆ

Xz  = rXY zY.
There is a special relation between rXY and the 

unstandardized predicted scores. If Y is regressed on 
X, for example, then

1.	 ˆXY YY
r r= ; that is, the bivariate correlation between 
X and Y equals the bivariate correlation between Y 
and Ŷ ;

2.	 the observed variance in Y can be represented as 
the exact sum of the variances of the predicted 
scores and the residuals, or 2

Ys  = 2
Ŷ

s  + 2
ˆY Y

s − ; and

3.	 2
XYr  = 2

Ŷ
s / 2

Ys , which says that the squared correla-
tion between X and Y equals the ratio of the vari-
ance of the predicted scores over the variance of the 
observed scores on Y.

The equality just stated is the basis for interpreting 
squared correlations as proportions of explained vari-
ance, and a squared correlation is the coefficient of 
determination. For the data in Table R.1, 2

XYr  = .6862 = 
.470, so we can say that X explains about 47.0% of the 
variance in Y, and vice versa. Exercise 3 asks you to 
verify the second and third equalities just described for 
the data in Table R.1.

When replication data are available, it is actually 
better to compare unstandardized regression coef-
ficients, such as BX, across different samples than to 
compare standardized regression coefficients, such as 
rXY. This is especially true if those samples have dif-
ferent variances on X or Y. This is because the correla-
tion rXY is standardized based on the variability in a 
particular sample. If variances in a second sample are 
not the same, then the basis of standardization is not 
constant over the first and second samples. In contrast, 
the metric of BX is that of the raw scores for variables X 
and Y, and these metrics are presumably constant over 
samples.

Unstandardized regression coefficients are also bet-

ter when the scales of all variables are meaningful 
rather than arbitrary. Suppose that Y is the time to com-
plete an athletic event and X is the number of hours 
spent in training. Assuming a negative covariance, the 
value of BX would indicate the predicted decrease in 
performance time for every additional hour of training. 
In contrast, standardized coefficients describe the effect 
of training on performance in standard deviation units, 
which discard the original—and meaningful—scales 
of X and Y. The assumptions of bivariate regression 
are essentially the same as those of multiple regression. 
They are considered in the next section.

MULTIPLE REGRESSION

The logic of multiple regression is considered next for 
the case of two continuous predictors, X and W, and a 
continuous criterion Y, but the same ideas apply if there 
are three or more predictors. The form of the unstan-
dardized equation for regressing Y on both X and W is

	 ,
ˆ

X W X WY B X B W A= + + 	 (R.8)

where BX and BW are the unstandardized partial 
regression coefficients and AX,W is the intercept. The 
coefficient BX estimates the change in Y, given a 1-point 
change in X while controlling for W. The coefficient BW 
has the analogous meaning for the other predictor. The 
intercept AX,W equals the predicted score on Y when 
the scores on both predictors are zero, or X = W = 0. 
If zero is not a valid score on either predictor, then 
Y can be regressed on centered scores (x  = X  – MX, 
w = W – MW) instead of the original scores. If so, then 
Ŷ  = Ax,w, given X = MX and W = MW. As in bivari-
ate regression, centering does not affect the values of 
the regression coefficients for each predictor in Equa-
tion R.8 (i.e., BX = Bx, BW = Bw).

The overall multiple correlation is actually just the 
Pearson correlation between the observed and predicted 
scores on the criterion, or RY·X,W = ˆYY

r . Unlike bivari-
ate correlations, though, the range of R is 0–1.0. The 
statistic R2 equals the proportion of variance explained 
in Y by both predictors X and W, controlling for their 
intercorrelation. For the data in Table R.1, the unstan-
dardized regression equation is

	 ˆ 2.147 1.302 2.340Y X W= + +
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and the multiple correlation equals .759. Given these 
results, we can say that

1.	 a 1-point change in X predicts an increase in Y of 
2.147 points, controlling for W;

2.	 a 1-point change in W predicts an increase in Y of 
1.302 points, controlling for X;

3.	 Ŷ  = 2.340, given X = W = 0; and

4.	 the predictors explain .7592 = .576, or about 57.6% 
of the total variance in Y, after taking account of 
their intercorrelation (rXW = .272; Table R.1).

The regression equation just described defines a plane 
in three dimensions where the slope along the X-axis 
is 2.147, the slope along the W-axis is 1.302, and the 
Y-intercept for X = W = 0 is 2.340. This regression sur-
face is plotted in Figure R.2 over the range of scores in 
Table R.1.

Equations for the unstandardized partial regression 
coefficients for each of two continuous predictors are

	 BX = bX Y

X

SD

SD

� �
� �
� �

  and  BW = bW WSD

SD

� �
� �
� �Y

	 (R.9)

where bX and bW for X and W are, respectively, their 
standardized partial regression coefficients, also 
known as beta weights. Their formulas are listed next:

 
21

XY WY XW
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XW

r r r
b

r

−
=

−
  and 
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−
=

−
	(R.10)

In the numerators of Equation R.10, the bivariate corre-
lation of each predictor with the criterion is adjusted for 
the correlation of the other predictor with the criterion 
and for correlation between the two predictors. The 
denominators in Equation R.10 adjust the total stan-
dardized variance by removing the proportion shared 
by the two predictors. If the values of rXY, rWY, and rXW 
vary over samples, then values of coefficients in Equa-
tions R.8–R.10 will also change.

Given three or more predictors, the formulas for the 
regression coefficients are more complicated but follow 
the same principles (see Cohen et al., 2003, pp. 636–
642). If there is just a single predictor X, then bX = rXY. 
The intercept in Equation R.8 can be expressed as a 
function of the unstandardized partial regression coef-
ficients and the means of all three variables as follows:

	 ,X W Y X X W WA M B M B M= − − 	 (R.11)

The regression equation for standardized variables is

	 ˆ
Y X XY W WYz b r b r= + 	 (R.12)

For the data in Table R.1, bX = .594, which says that 
the difference on Y is expected to be about .60 stan-
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FIGURE R.2.  Unstandardized regression surface for predicting Y from X and W for the data in Table R.1.
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dard deviations large, given a difference on X of one 
full standard deviation, while we are controlling for W. 
The result bW = .337 has the analogous meaning except 
that X is now statistically controlled. Because all vari-
ables have the same metric in the standardized solu-
tion, we can directly compare values of bX with bW and 
correctly infer that the relative predictive power of X is 
about 1.76 times that of W because the ratio .594/.337 = 
1.76. In general, values of b can be directly compared 
across different predictors within the same sample, 
but unstandardized coefficients (B) are preferred for 
comparing results for the same predictor over different 
samples.

The statistic 2
,Y X WR ⋅  can also be expressed as a func-

tion of the beta weights and bivariate correlations of the 
predictors with the criterion. With two predictors,

	 2
,Y X W X XY W WYR b r b r⋅ = + 	 (R.13)

The role of beta weights as corrections for predictor 
overlap is also apparent in this equation. Specifically, if 
rXW = 0 (the predictors are independent), then bX = rXY 
and bW = rWY (Equation R.10). This means that 2

,Y X WR ⋅  
is just the sum of 2

XYr  and 2
WYr . But if rXW ≠ 0 (the pre-

dictors covary), then bX and bW do not equal the cor-
responding bivariate correlations and 2

,Y X WR ⋅  is not the 
simple sum of 2

XYr  and 2
WYr  (it is less). Exercise 4 asks 

you to verify some of the facts about multiple regres-
sion just stated for the data in Table R.1.

Standard regression analyses do not require raw data 
files. This is because regression equations and values 
of R2 can be calculated from summary statistics (e.g., 
Equation R.13), and many regression computer proce-
dures read summary statistics as the input data. For 
example, the SPSS syntax listed next reads the sum-
mary statistics in Table R.1 and specifies the regres-
sion of Y on X and W. Four-decimal accuracy is recom-
mended for matrix input:

comment table R.1, regress y on x, w.
matrix data variables=x w y/
contents=mean sd n corr
 /format=lower nodiagonal.
begin data
16.9000 49.4000 102.9500
3.0070 2.8172 10.8699
20 20 20
.2721
.6858 .4991
end data.

regression matrix=in(*)/
variables=x w y/
dependent=y
 /enter.

A drawback to conducting regression analyses with 
summaries statistics is that residuals cannot be calcu-
lated for individual cases.

Corrections for Bias
The statistic R2 is a positively biased estimator of r2 
(rho-squared), the population proportion of explained 
variance. The degree of bias is greater in smaller sam-
ples or when the number of predictors is large relative 
to the number of cases. For example, if N = 2 in bivari-
ate regression and there are no tied scores on X or Y, 
then r2 must equal 1.0. Now suppose that N = 100 and k 
= 99, where k is the number of predictor variables. With 
so many predictors—in fact, the maximum number for 
N = 100—the value of R2 must equal 1.0 because there 
can be no error variance with so many predictors, and 
this is true even for random numbers.

There are many corrections that downward adjust R2 
as a function of N and k. Perhaps the most familiar is 
Wherry’s (1931) equation:

	 2 2 1ˆ 1 (1 )
1

N
R R

N k

− = − −   − −
	 (R.14)

where 2R̂  is the shrinkage-corrected estimate of r2. 
In small samples it can happen that 2R̂  < 0; if so, then  

2R̂  is interpreted as though its value were zero. As the 
sample size increases for a constant number of predic-
tors, values of 2R̂  and R2 are increasingly similar, and 
in very large samples they are essentially equal; that 
is, it is unnecessary to correct for positive bias in very 
large samples. Exercise 5 asks you to apply the Wherry 
correction to the data in Table R.1.

Assumptions
The statistical and conceptual assumptions of regres-
sion are strict, probably more so than many researchers 
realize. They are summarized next:

1.  Regression coefficients reflect unconditional 
linear relations only. The estimate for BX in Equa-
tion R.8 assumes that the linear relation between X and 
Y remains constant over all levels of (a) X itself, (b) the 
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other measured predictor, W, and (c) all unmeasured 
predictors. But if the relation between X and Y is appre-
ciably curvilinear or conditional, the value of BX could 
misrepresent predictive power. A conditional relation 
implies interaction, where the covariance between 
X  and Y changes over the levels of at least one other 
predictor, measured or unmeasured. A curvilinear rela-
tion of X to Y is also conditional in the sense that the 
shape of the regression surface changes over the levels 
of X (e.g., Figure 7.7). How to represent curvilinear or 
interactive effects in regression analysis and SEM is 
considered in Chapter 7.

2.  All predictors are perfectly reliable (no measure-
ment error). This very strong assumption is necessary 
because there is no direct way in standard regression 
analysis to represent or control for less-than-perfect 
score reliability for the predictors. Consequences of 
minor violations of this requirement may not be criti-
cal, but more serious ones can result in substantial bias. 
This bias can affect not only the regression weights of 
predictors measured with error but also those of other 
predictors. It is difficult to anticipate the direction of 
this propagation of measurement error. Depending 
on sample intercorrelations, some absolute regression 
weights may be biased upward (too large), but oth-
ers may be biased in the other direction (too small), 
or attenuation bias. There is no requirement that the 
criterion be measured without error, but the use of a 
psychometrically deficient measure of it can reduce the 
value of R2. Note that measurement error in the cri-
terion only affects the standardized regression coeffi-
cients, not the unstandardized ones. If the predictors 
are also measured with error, too, then these effects for 
the criterion could be amplified, diminished, or can-
celed out, but it is best not to hope for the absence of 
bias; see Williams et al. (2013) for more information 
about measurement error in regression analysis.

3.  Significance tests in regression assume that the 
residuals are normally distributed and homoscedas-
tic. The homoscedasticity assumption means that the 
residuals have constant variance across all levels of the 
predictors. Distributions of residuals can be heterosce-
dastic (the opposite of homoscedastic) or non-normal 
due to outliers, severe non-normality in the observed 
scores, more measurement error at some levels of the 
criterion or predictors, or a specification error. The 
residuals should always be inspected in regression 
analyses (see Cohen, Cohen, West, & Aiken, 2003, 
chap. 4). Reports of regression analyses without com-

ment on the residuals are inadequate. Exercise 6 asks 
you to inspect the residuals for the multiple regression 
analysis of the data in Table R.1. Although there is no 
requirement in regression for normal distributions of 
the original scores, values of multiple correlations and 
absolute partial regression coefficients are reduced if 
the distributions for a predictor and the criterion have 
very different shapes, such as very positively skewed on 
one versus very negatively skewed on the other.

4.  There are no causal effects among the predictors 
(i.e., there is a single equation). Because predictors and 
criteria are theoretically interchangeable in regression, 
such analyses can be viewed as strictly predictive. But 
sometimes the analysis is explicitly or implicitly moti-
vated by causal hypotheses, where a researcher views 
the regression equation as a prototypical causal model 
with the predictors as causes and the criterion as their 
outcome (Cohen et al., 2003). If predictors in standard 
regression analyses are viewed as causal, then we must 
assume there are no causal effects among them. Spe-
cifically, standard regression analyses do not allow for 
indirect causal effects where one predictor, such as X, 
affects another, such as W, which in turn affects the cri-
terion, Y. The indirect effect just described would be 
represented in SEM by the presumed causal order

	 X  W  Y

From a regression perspective, (1) variable W is both 
a predictor (of Y) and an outcome (of X), and (2) there 
are actually two equations, one for W another for Y. 
But standard regression techniques analyze a single 
equation at a time, in this case for just Y, and thus yield 
estimates of direct effects only. If there are appreciable 
indirect effects but such effects are not explicitly repre-
sented in the analysis,, then estimates of direct effects 
in standard regression analyses can be very wrong 
(Achen, 2005). The idea behind this type of bias is elab-
orated in Chapter 6, which concerns a graph-theoretic 
approach to causal inference.

5.  There is no specification error. A few different 
kinds of potential mistakes involve specification error. 
These include the failure to estimate the correct func-
tional form of relations between predictors and the cri-
terion, such as assuming unconditional linear effects 
only when there are sizable curvilinear or interac-
tive effects. Use of the incorrect estimation method is 
another kind of error. For example, OLS estimation is 
for continuous criteria, but dichotomous outcomes (e.g., 



8	 Regression Primer		

pass–fail) generally require different methods, such as 
those used in logistic regression. Including predictors 
that are irrelevant in the population is a specification 
error. The concern is that an irrelevant predictor could 
in a particular sample relate to the criterion by sam-
pling error alone, and this chance covariance may dis-
tort values of regression coefficients for other predic-
tors. Omitting from the regression equation predictors 
that (1) account for some unique proportion of criterion 
variance and (2) covary with measured predictors is 
left-out variables error, described next.

LEFT‑OUT VARIABLES ERROR

—or more lightheartedly described as the “heartbreak 
of L.O.V.E.” (Mauro, 1990), this is a potentially seri-
ous specification error. As covariances between mea-
sured (included) and unmeasured (excluded) predictors 
increase, results based on the included predictors only 
tend to become progressively more biased. Suppose that 
rXY = .40 and rWY = .60 for, respectively, predictors X 
and W. A researcher measures only X and specifies it as 
the sole predictor of Y in a bivariate regression. In this 
analysis for the included predictor, the standardized 
regression coefficient is rXY = .40. But if the researcher 
had the foresight to also measure W, the omitted pre-
dictor, and specify it along with X as predictors in a 
multiple regression analysis (e.g., Equation  R.8), the 
beta weight for X in this analysis, bX, may not equal 
.40. If not, then rXY as a standardized regression coef-
ficient with X as the sole predictor does not reflect the 
true relation of X to Y compared with bX derived with 
both predictors in the equation.

The difference between rXY and bX varies with rXW, 
the correlation between the included and omitted pre-
dictors. Specifically, if the included and omitted pre-
dictors are unrelated (rXW = 0), there is no difference, 
or rXY = bX = .40 in this example because there is no 
correction for correlated predictors. Specifically, given

	 rXY = .40, rWY = .60, and rXW = 0

you can verify, using Equations R.10 and R.13, that the 
multiple regression results with both predictors are

	 bX = .40, bW = .60, and 2
,Y X WR ⋅  = .52

So we conclude that rXY = bX = .40 regardless of whether 

or not W is included in the regression equation, given 
rXW = 0.

Now suppose that

	 rXY = .40, rWY = .60, and rXW = .60

Now we assume that the correlation between the 
included predictor X and the omitted predictor W is 
.60, not zero. In the bivariate analysis with X as the sole 
predictor, rXY = .40 (the same as before), but now the 
results of the multiple regression analysis are

	 bX = .06, bW = .56, and 2
,Y X WR ⋅  = .36

Here the value of bX is much lower than that of rXY, 
respectively, .06 versus .40. This happens because coef-
ficient bX controls for rXW = .60, whereas rXY does not; 
thus, rXY overestimates the relation between X and Y 
compared with bX.

Omitting a predictor correlated with others in the 
equation does not always result in overestimation of the 
predictive power of an included predictor. For example, 
if X is the included predictor and W is the omitted pre-
dictor, it is also possible for the absolute value of rXY 
in the bivariate analysis to be less than that of bX when 
both predictors are included in the equation; that is, rXY 
underestimates the relation indicated by bX. It is also 
possible for rXY and bX to have different signs. Both 
cases just mentioned indicate suppression, described in 
more detail in the next section. But overestimation due 
to omission of a predictor may occur more often than 
underestimation (suppression). Also, the pattern of bias 
may be more complicated when there are several omit-
ted variables (e.g., overestimation for some measured 
predictors, underestimation for others).

Predictors are typically excluded because they are 
not measured. This means that it is difficult to actually 
know by how much and in what direction(s) regression 
coefficients may be biased relative to what their val-
ues would be if all relevant predictors were included. 
But it is unrealistic to expect the researcher to know 
and be able to measure all relevant predictors. In this 
sense, all regression equations are probably misspeci-
fied to some degree. If omitted predictors are uncor-
related with included predictors, the consequences of 
left-out variables error may be slight; otherwise, the 
consequences may be more serious. Careful review of 
theory and research is the main way to avoid serious 
specification error by decreasing the potential number 
of left-out variables.
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SUPPRESSION

Perhaps the most general definition is that suppression 
occurs when either (1) the absolute value of a predic-
tor’s beta weight is greater than that of its bivariate 
correlation with the criterion or (2) the two have dif-
ferent signs (see also Shieh, 2006). So defined, sup-
pression implies that the estimated relation between 
a predictor and a criterion while controlling for other 
predictors is a “surprise,” given the bivariate correla-
tions. Suppose that X is the amount of psychotherapy, 
W is the degree of depression, and Y is the number of 
prior suicide attempts. The bivariate correlations in a 
hypothetical sample are

	 rXY = .19, rWY = .49, and rXW = .70

Based on these results, it might seem that psychother-
apy is harmful because of its positive association with 
suicide attempts (rXY = .19). When both predictors (psy-
chotherapy and depression) are analyzed in multiple 
regression, however, the results are

	 bX = –.30, bW = .70, and 2
,Y X WR ⋅  = .29

The beta weight for psychotherapy (–.30) has the oppo-
site sign of its bivariate correlation (.19), and the beta 
weight for depression (.70) exceeds its bivariate correla-
tion (.49).

The results just described are due to controlling for 
other predictors. Here, people who are more depressed 
are more likely to be in psychotherapy (rXW = .70) and 
also more likely to try to harm themselves (rWY = .49). 
Correcting for these associations in multiple regression 
indicates that the relation of psychotherapy to suicide 
attempts is actually negative once depression is con-
trolled. It is also true that the relation of depression 
to suicide is even stronger (here, more positive) once 
psychotherapy is controlled. Omit either psychotherapy 
or depression from the analysis—a left-out variables 
error—and the bivariate results with the remaining 
predictor are misleading.

The example just described concerns negative sup-
pression, where the predictors have positive bivariate 
correlations with the criterion and with each other, 
but one receives a negative beta weight in the multiple 
regression analysis. A second type is classical sup-
pression, where one predictor is uncorrelated with the 
criterion but receives a nonzero beta weight controlling 
for another predictor. For example, given the following 
correlations in a hypothetical sample,

	 rXY = 0, rWY = .60, and rXW = .50

the results of a multiple regression analysis are

	 bX = –.40, bW = .80, and 2
,Y X WR ⋅  = .48

This example of classical suppression (i.e., rXY = 0, 
bX = –.40) demonstrates that bivariate correlations of 
zero can mask true predictive relations once other vari-
ables are controlled. There is also reciprocal suppres-
sion, which can occur when two variables correlate 
positively with the criterion but negatively with each 
other. Some cases of suppression can be modeled in 
SEM as the result of inconsistent direct versus indirect 
effects of causally prior variables on outcome variables. 
These possibilities are explored later in the book.

PREDICTOR SELECTION AND ENTRY

An implication of suppression is that predictors should 
not be selected based on values of bivariate correla-
tions with the criterion. These zero-order associations 
do not control for other predictors, so their values can 
be misleading compared with partial regression coef-
ficients for the same variables. For the same reason, 
whether or not bivariate correlations with the criterion 
are statistically significant is also irrelevant concern-
ing predictor selection. Although regression computer 
procedures make it easy to do so, researchers should 
avoid mindlessly dumping long lists of explanatory 
variables into regression equations in order to control 
for their effects (Achen, 2005). The risk is that even 
small but undetected nonlinearities or indirect effects 
among predictors can seriously bias partial regression 
coefficients. It is better to judiciously select the smallest 
number of predictors—those deemed essential based 
on extant theory or results of prior empirical studies.

Once selected, there are two basic ways to enter 
predictors into the equation: One is to enter all predic-
tors at once, or simultaneous (direct) entry. The other 
is to enter them over a series of steps, or sequential 
entry. Entry order can be determined according to 
one of two different standards, theoretical (rational) 
or empirical (statistical). The rational standard corre-
sponds to hierarchical regression, where you tell the 
computer a fixed order for entering the predictors. For 
example, sometimes demographic variables are entered 
at the first step, and then entered at the second step is a 
psychological variable of interest. This order not only 
controls for the demographic variables but also permits 
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evaluation of the predictive power of the psychologi-
cal variable, over and beyond that of the simple demo-
graphic variables. The latter can be estimated as the 
increase in the squared multiple correlation, or DR2, 
from that of step 1 with demographic predictors only to 
that of step 2 with all predictors in the equation.

An example of the statistical standard is stepwise 
regression, where the computer selects predictors for 
entry based solely on statistical significance; that is, 
which predictor, if entered into the equation, would 
have the smallest p value for the test of its partial 
regression coefficient? After selection, predictors at a 
later step can be removed from the equation according 
to p values (e.g., if p ≥ .05 for a predictor in the equation 
at a particular step). The stepwise process stops when 
there could be no statistically significant DR2 by add-
ing more predictors. Variations on stepwise regression 
include forward inclusion, where selected predictors 
are not later removed from the equation, and back-
ward elimination, which begins with all predictors in 
the equation and then automatically removes them, but 
such methods are directed by the computer, not you.

Problems of stepwise and related methods are so 
severe that they are actually banned in some jour-
nals (Thompson, 1995), and for good reasons, too. 
One problem is extreme capitalization on chance. 
Because every result in these methods is determined 
by p values in a particular sample, the findings are 
unlikely to replicate. Another problem is that not all 
stepwise regression procedures report p values that are 
corrected for the total number of variables that were 
considered for inclusion. Consequently, p values in 
stepwise computer output are generally too low, and 
absolute values of test statistics are too high; that is, 
the computer’s choices could actually be wrong. Even 
worse, such methods give the false impression that the 
researcher does not have to think about predictor selec-
tion. Stepwise and related methods are anachronisms 
in modern data analysis. Said more plainly, death to 
stepwise regression, think for yourself (e.g., hierarchi-
cal entry)—see Whittingham, Stephens, Bradbury, 
and Freckleton (2006) for more information.

Once a final set of rationally selected predictors has 
been entered into the equation, they should not be subse-
quently removed if their regression coefficients are not 
statistically significant. To paraphrase Loehlin (2004), 
the researcher should not feel compelled to drop every 
predictor that is not significant. In smaller samples, the 
power of significance tests may be low, and removing a 
nonsignificant predictor can substantially alter the solu-

tion. If you had good reason for including a predictor, 
then it is better to leave it in the equation until replica-
tion indicates that the predictor does not appreciably 
relate to the criterion.

PARTIAL AND PART CORRELATION

The concept of partial correlation concerns the idea 
of spuriousness: If the observed relation between 
two variables is wholly due to one or more common 
cause(s), their association is spurious. Consider these 
bivariate correlations between vocabulary breadth (Y), 
foot length (X), and age (W) in a hypothetical sample of 
elementary school children:

	 rXY = .50, rWY = .60, and rXW = .80

Although the correlation between foot length X and 
vocabulary breadth Y is fairly substantial (.50), it is 
hardly surprising because both are caused by a third 
variable, age W (i.e., maturation).

The first-order partial correlation rXY·W removes 
the influence of a third variable W from both X and Y. 
The formula is

	

( ) ( )2 21 1

XY XW WY
XY W

XW WY

r r r
r

r r
⋅

−
=

− −
	 (R.15)

Applied to the hypothetical correlations just listed, the 
partial correlation between foot length and vocabulary 
breadth controlling for age is rXY·W = .043. (You should 
verify this result.) Because the association between X 
and Y disappears when W is controlled, their bivariate 
relation may be spurious. Presumed spurious associa-
tions due to common causes are readily represented in 
SEM.

Equation R.15 for partial correlation can be extended 
to control for two or more external variables. For 
example, the second-order partial correlation rXY·WZ 
estimates the association between X and Y controlling 
for both W and Z. There is a related coefficient called 
part correlation or semipartial correlation that con-
trols for external variables out of either of two other 
variables, but not both. The formula for the first-order 
part correlation rY(X·W), for which the association 
between X and W is controlled but not for the associa-
tion between Y and W, is



		  Regression Primer	 11

	 ( ) 21

XY WY XW
Y X W

XW

r r r
r

r
⋅

−
=

−
	 (R.16)

Given the same bivariate correlations among these 
three variables reported earlier, the part correlation 
between vocabulary breadth (Y) and foot length (X) 
controlling only foot length for age (W) is rY(X·W) = .033. 
This result (.033) is somewhat smaller than the partial 
correlation for these data, or rXY·W = .043. In general, 
rXY·W ≥ rY(X·W); if rXW = 0, then rXY·W = rY(X·W).

Relations among the squares of the various correla-
tions just described can be illustrated with a Venn-type 
diagram like the one in Figure R.3. The circles repre-
sent total standardized variances of the criterion Y and 
predictors X and W. The regions in the figure labeled 
a–d make up the total standardized variance of Y, so

	 a + b + c + d = 1.0

Areas a and b represent the proportions of variance 
in Y uniquely explained by, respectively, X and W, 
but area c represents the simultaneous overlap (redun-
dancy) of the predictors with the criterion.1 Area d 
represents the proportion of unexplained variance. The 

1  Note that interpretation of the area c in Figure R.3 as a propor-
tion of variance generally holds when all bivariate correlations 
are positive and there is no suppression. Otherwise, the value c 
can be a negative, but there is no such thing as a negative propor-
tion of variance.

squared bivariate correlations of the predictors with the 
criterion and the overall squared multiple correlation 
can be expressed as sums of the areas a, b, c, or d in 
Figure R.3, as follows:

	 2
XYr  = a + c  and  2

WYr  = b + c

	 2
,Y X WR ⋅  = a + b + c = 1.0 – d

The squared part correlations match up directly with 
the unique areas a and b in Figure R.3. Each of these 
areas also equals the increase in the total proportion 
of explained variance that occurs by adding a second 
predictor to the equation (i.e., DR2); that is,

	 2 2 2
( ) ,Y X W Y X W WYr a R r⋅ ⋅= = − 	 (R.17)

	 2 2 2
(W ) ,Y X Y X W XYr b R r⋅ ⋅= = −

The squared partial correlations correspond to areas a, 
b, and d in Figure R.3, and each estimates the propor-
tion of variance in the criterion explained by one pre-
dictor but not the other. The formulas are

	

2 2
,2

21

Y X W WY
XY W

WY

R ra
r

a d r

⋅
⋅

−
= =

+ −
	 (R.18)

FIGURE R.3.  Venn diagram for the standardized variances of predictors X and W and criterion Y.
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For the data in Table R.1, 2
( )Y X Wr ⋅  = .327 and 

2
XY Wr ⋅  =  .435. In words, predictor X uniquely explains 

.327, or 32.7% of the total variance of Y (squared part 
correlation). Of the variance in Y not already explained 
by W, predictor X accounts for .435, or 43.5% of the 
remaining variance (squared partial correlation). 
Exercise 7 asks you to calculate and interpret the cor-
responding results for the other predictor, W, and the 
same data.

When predictors are correlated—which is just about 
always—beta weights, partial correlations, and part 
correlations are alternative ways to describe in stan-
dardized terms the relative explanatory power of each 
predictor controlling for the rest. None is more “cor-
rect” than the others because each gives a different 
perspective on the same data. Note that unstandardized 
regression coefficients (B) are preferred when compar-
ing results for the same predictors and criterion across 
different samples.

OBSERVED 
VERSUS ESTIMATED CORRELATIONS

The Pearson correlation estimates the degree of linear 
association between two continuous variables. Its equa-
tion is

 
	 == =

∑
1cov i i

N

X Y
iXY

XY
X Y

z z

r
SD SD df

	 (R.19)

where df = N – 1. Rodgers and Nicewander (1988) 
described a total of 11 other formulas, each of which 
represents a different conceptual or computational defi-
nition of r, but all of which yield the same result for the 
same data.

A continuous variable is one for which, theoreti-
cally, any value is possible within the limits of its score 
range. This includes values with decimals, such as 3.75 
seconds or 13.60 kilograms. In practice, variables with 
a range of at least 15 points or so are usually consid-
ered as continuous even if their scores are discrete, or 
integers only (e.g., scores of 10, 11, 12, etc.). For exam-
ple, the PRELIS program of LISREL—used for data 

preparation—automatically classifies a variable with 
less than 16 levels as ordinal.

The statistic r has a theoretical maximum absolute 
value of 1.0. But the practical upper limit for | r | is < 1.0 
if the relation between X and Y is not unconditionally 
linear, there is measurement error in either X or Y, or 
distributions for X versus Y have different shapes. The 
amount of variation in samples (i.e., SDX and SDY in 
Equation R.19) also affects the value of r. In general, 
restriction of range on either X or Y through sampling 
or case selection (e.g., only cases with higher scores 
on X are studied) tends to reduce values of | r |, but 
not always (see Huck, 1992). The presence of outliers, 
or extreme scores, can also distort the value of r; see 
Goodwin and Leech (2006) for more information.

There are other forms of the Pearson correlation for 
observed variables that are either natural dichotomies, 
such as male versus female for chromosomal sex, or 
ordinal (ranks). For example:

1.	 The point-biserial correlation (rpb) estimates the 
association between a dichotomy and a continuous 
variable (e.g., treatment vs. control, weight).

2.	 The phi coefficient (ϕ̂) is for two dichotomies (e.g., 
treatment vs. control, survived vs. died).

3.	 Spearman’s rank order correlation or Spear-
man’s rho (ρ̂) is for two ranked variables (e.g., 
finish order in a race, rank by amount of training 
time).

Computational formulas for all these special forms are 
just rearrangements of Equation R.19 for r (e.g., Kline, 
2013a, pp. 138, 166).

All forms of the Pearson correlation estimate asso-
ciations between observed (measured) variables. Other, 
non-Pearson correlations assume that the underlying, 
or latent, variables are continuous and normally dis-
tributed. For example:

1.	 The biserial correlation (rbis) is for a naturally con-
tinuous variable, such as weight, and a dichotomy, 
such as recovered–not recovered, that theoretically 
represents a dichotomized continuous latent vari-
able. For example, presumably degrees of recovery 
were collapsed when the observed dichotomy was 
created. The value of rbis estimates what the Pear-
son r would be if the dichotomized variable were 
continuous and normally distributed.

2.	 The polyserial correlation is the generalization of 
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rbis that does basically the same thing for a naturally 
continuous variable and a theoretically continuous-
but-polytomized variable (i.e., categorized into 
three or more levels). Likert-type response scales 
for survey or questionnaire items, such as agree, 
undecided, or disagree, are examples of a poly-
tomized response continuum about the degree of 
agreement.

3.	 The tetrachoric correlation (rtet) for two dichoto-
mized variables estimates what r would be if both 
measured variables were continuous and normally 
distributed.

4.	 The polychoric coefficient is the generalization of 
the tetrachoric correlation that estimates r but for 
ordinal observed variables with two or more levels.

Computing polyserial or polychoric correlations is rela-
tively complicated and requires special software, such 
as PRELIS in LISREL. These programs generally use 
a special form of maximum likelihood estimation that 
assumes normality of the latent continuous variables, 
and error variance tends to increase rapidly as the num-
ber of categories on the observed variables decreases 
from about five to two; that is, dichotomized continu-
ous variables generate the greatest imprecision.

The PRELIS program can also analyze censored 
variables, for which values occur outside of the range 
of measurement. Suppose that a scale registers values 
of weight between 1 and 300 pounds only. For objects 
that weigh either less than 1 pound or more than 300 
pounds, the scale tells us only that the measured 
weight is, respectively, at most 1 pound or at least 300 
pounds. In this example, the hypothetical scale is both 
left censored and right censored because the values 
less than 1 or more than 300 are not registered on the 
scale. There are other possibilities for censoring, but 
scores on censored variables are either exactly known 
(e.g., weight = 250) or partially known in that they fall 
within an interval (e.g., weight ≥ 300). The technique 
of censored regression, better known in economics 
than in the behavioral sciences, analyzes censored out-
comes.

In SEM, Pearson correlations are normally ana-
lyzed as part of analyzing covariances when outcome 
variables are continuous. But noncontinuous outcome 
variables can be analyzed in SEM, too. One option is 
to calculate polyserial or polychoric correlations from 
the raw data and then fit the model to these predicted 
Pearson correlations. Special methods for analyzing 

noncontinuous variables in SEM are considered later in 
Chapters 17 and 18.

In both regression and SEM, it is generally a bad idea 
to categorize predictors or outcomes that are continuous 
in order to form pseudo-groups (e.g., “low” vs. “high” 
based on a mean split). Categorization not only discards 
numerical information about individual differences 
in the original distribution but it also tends to reduce 
absolute values of sample correlations when population 
distributions are normal. The degree of this reduction 
is greater as the cutting point moves further away from 
the mean. But if population correlations are low and the 
sample size is small, then categorization can actually 
increase absolute sample correlations. Categorization 
can also create artifactual main or interactive effects, 
especially when cutting points are arbitrary. In general, 
it is better to analyze continuous variables as they are 
and without categorizing them—see Royston, Altman, 
and Sauerbrei (2006) for more information.

LOGISTIC REGRESSION 
AND PROBIT REGRESSION

Some options to analyze dichotomous outcomes in SEM 
are based on logistic regression. Just as in standard 
multiple regression, the predictors in logistic regression 
can be either continuous or categorical. But the predic-
tion equation in logistic regression is a logistic func-
tion, or a sigmoid function with an “S” shape. It is a 
type of link function, or a transformation that relates 
the observed outcomes to the predicted outcomes in a 
regression analysis. Each method of regression has its 
own special kind of link function. In standard multiple 
regression with continuous variables, the link function 
is the identity link, which says that observed scores on 
the criterion Y are in the same units as Ŷ , the predicted 
scores (e.g., Figure R.1). For noncontinuous outcomes, 
though, original and predicted scores are in different 
metrics. This is also true in logistic regression, where 
the link function is the logit link as explained next.

Suppose that a total of 32 patients with the same dis-
order are administered a daily treatment for a varying 
number of days (5–60). After treatment, the patients are 
rated as recovered (1) or not recovered (0). Presented in 
Table R.2 are the hypothetical raw data for this exam-
ple. I used Statgraphics Centurion (Statgraphics Tech-
nologies, 1982–2022)2 to plot the logistic function with 

2 https://www.statgraphics.com/centurion-overview
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95% confidence limits for these data that is presented 
in Figure R.4. This function generates π̂ , the predicted 
probability of recovery, given the number of days 
treated, X. The confidence limits for these predictions 
are so wide because the sample size is small (see the 
figure). Because predicted probabilities are estimated 
from the data, they correspond to a latent continuous 
variable, and in this sense logistic regression (and pro-
bit regression, too) can be seen as a latent variable tech-
nique.

The estimation method in logistic regression is not 
OLS. Instead, it is usually a form of maximum likeli-
hood estimation that is applied after transforming the 
dichotomous outcome variable into a logit, which is the 
natural logarithm (i.e., natural base e, or about 2.7183) 
of the odds of the target outcome, ω̂ . The quantity ω̂  is 

the ratio of the probability for the target event, such as 
recovered, over the probability for the other event, such 
as not recovered. Suppose that 60% of patients recover 
after treatment, but the rest, or 40%, do not recover, or

	 π̂  = .60 and 1 – π̂  = .40

The odds of recovery are thus ω̂  = .60/.40, or 1.50; 
that is, the odds are 3:2 in favor of recovery. Odds 
are converted back to probabilities by dividing the 
odds by 1.0 plus the odds. For example, ω̂  = 1.50, so 
π̂  = 1.50/2.50 = .60, which is the probability of recov-
ery.

Coefficients for predictors in logistic regression are 
calculated by the computer in a log metric, but each 
coefficient can be converted to an odds ratio, which 

TABLE R.2.  Example Data Set for Logistic Regression and Probit Regression
Status n Number of days in treatment (X)

Not recovered (Y = 0) 16 6, 7, 9, 10, 11, 13, 15, 16, 18, 19, 23, 25, 26, 28, 30, 32

Recovered (Y = 1) 16 27, 30, 33, 35, 36, 39, 41, 42, 44, 46, 47, 49, 51, 53, 55, 56

FIGURE R.4.  Predicted probability of recovery with 95% confidence limits for the data in Table R.2.
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estimates the difference in the odds of the target out-
come, given a 1-point increase in the predictor, con-
trolling for all other predictors. I submitted the data 
in Table R.2 to the Logistic Regression procedure in 
Statgraphics Centurion. The prediction equation in a 
log metric is

	 ( )
ˆ

ˆˆlogit ( ) ln ln .455 13.701
ˆ1

X
π π = = ω = −  − π

where .455 is the coefficient for the predictor X, number 
of treatment days, and –13.701 is the intercept. Taking 
the antilogarithm of the coefficient for days in treat-
ment, or

	 ln–1 (.455) = e.455 = 1.576

gives us the odds ratio, or 1.576. This result says that for 
each additional day of treatment, the odds for recovery 
increase by 57.6%. But this rate of increase is not lin-
ear; instead, the rate at which a logistic curve ascends 
or descends changes according to values of the predic-
tor. For these data, the greatest rate of change in pre-
dicted recovery occurs between 30 and 40 days of treat-
ment. But at the extremes (X < 30 or X > 40), the rate of 
change in the probability of recovery is much less—see 
Figure R.4. The inverse logit function presented next 
generates the logistic curve plotted in the figure:

	
.455 13.701

1
.455 13.701

ˆ logit (.455 13.701)
1

X

X

e
X

e

−
−

−π = − =
+

An alternative method is probit regression, which 
analyzes binary outcomes in terms of a probit func-
tion, where probit stands for “probability unit.” Like-
wise, the link function in probit regression is the 
probit link. A probit model assumes that the observed 
dichotomy Y = 1 for the target outcome versus Y = 0 
for other events is determined by a normal continuous 
latent variable Y* with a mean of zero and variance of 
1.0 such that

	
1 if * 0

0 if * 0

Y
Y

Y

≥
=  <

	 (R.20)

The equation in probit regression generates ˆ*Y  in the 
metric of normal deviates (z scores). Next, the com-
puter uses the equation for the cumulative distribution 

function of the normal curve (F) to calculate predicted 
probabilities of the target outcome π̂  from values of ˆ*Y  
for each case:

	 ˆˆ ( *)Yπ = Φ 	 (R.21)

Equation R.21 is known as the normal ogive model.3

I analyzed the data in Table R.2 using the Probit 
Analysis procedure in Statgraphics Centurion. The 
prediction equation is

	 ˆ*Y  = .268X – 8.072

The coefficient for X, .268, estimates in standard devia-
tion units the amount of change in recovery, given a 
one-day increase in treatment. That is, the z-score for 
recovery increases by .268 for each additional day of 
treatment. Again, this rate of change is not constant 
because the overall relation is nonlinear (Figure R.4). 
Predicted probabilities of recovery for this example are 
generated by the probit function

	 ˆ (.268 8.072)Xπ = Φ −

The 95% confidence limits for the probit function are 
somewhat different than those for the logistic function 
for the data in Table R.2—see Figure R.4.

Logistic regression and probit regression applied in 
the same large samples tend to give similar results but in 
different metrics for the coefficients. The scaling factor 
that converts results from the logistic model to the same 
metric as the normal ogive (probit) model is approxi-
mately 1.7. For example, the ratio of the coefficients 
for the predictor in, respectively, the logistic and probit 
analyses of the data in Table R.2 is .455/.268 = 1.698, 
or 1.7 at single-decimal accuracy. The two procedures 
may generate appreciably different results if there are 
many cases at the extremes (predicted probabilities 
are close to either 0 to 1.0) or if the sample is small. 
Probit regression is more computationally intensive 
than logistic regression, but this difference is rela-
tively unimportant for modern microcomputers with 
fast processors and ample memory. It can happen that 
computer procedures for probit regression may fail to 
generate a solution in smaller samples. Agresti (2019) 
describes additional techniques for categorical data.

3  You can see the equation for Φ at https://en.wikipedia.org/
wiki/Normal_distribution
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SUMMARY

You should know about regression analysis before 
learning the basics of SEM. For both sets of techniques, 
the results are affected not only by what is measured 
(i.e., the data) but also by what is not measured, espe-
cially if omitted predictors covary with included pre-
dictors, which is a specification error. Accordingly, you 
should carefully select predictors after review of theory 
and results of prior studies in the area. In regression, 
those predictors should have adequate psychometric 
characteristics because there is no allowance for mea-
surement error. The same restriction does not apply in 
SEM, but use of grossly inadequate measures in SEM 
can seriously bias the results, too. When selecting pre-
dictors, the role of judgment should be greater than that 
of significance testing, which can greatly capitalize on 
sample-specific variation. 

LEARN MORE

The book by Cohen, Cohen, West, and Aiken (2003) is con-
sidered by many as a kind of “bible” for multiple regression. 
Royston, Altman, and Sauerbrei (2006) explain why catego-
rizing predictor or outcome variables is a bad idea. Shieh 
(2006) describes suppression in more detail.

Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003). 
Applied multiple regression/correlation analysis for the 
behavioral sciences (3rd ed.). New York: Routledge.

Royston, P., Altman, D. G., & Sauerbrei, W. (2006). Dichot-
omizing continuous predictors in multiple regression: A 
bad idea. Statistics in Medicine, 25, 127–141.

Shieh, G. (2006). Suppression situations in multiple linear 
regression. Educational and Psychological Measurement, 
66, 435–447.

EXERCISES

All questions concern the data in Table R.1.

1.	 Calculate the unstandardized regression equation 
for predicting Y from X based on the descriptive 
statistics.

2.	 Show that centering scores on X does not change 
the value of the unstandardized regression coeffi-
cient for predicting Y but does affect the value of the 
intercept.

3.	 Show that 2
Ys  = 2

Ŷ
s  + 2

ˆY Y
s −  and 2

XYr  = 2
Ŷ

s / 2
Ys  when X 

is the only predictor of Y.

4.	 Calculate the unstandardized regression equa-
tion and the standardized regression equation for 
predicting Y from both X and W. Also calculate 

2
,Y X WR ⋅ .

5.	 Calculate 2
,

ˆ
Y X WR ⋅ .

6.	 Construct a histogram of the residuals for the 
regression of Y on both X and W.

7.	 Compute and interpret 2
WY Xr ⋅  and 2

( )Y X Wr ⋅ .

ANSWERS

1.	 Given the descriptive statistics and with slight 
rounding error:

		
10.870

.686 2.479
3.007XB

 = =  
	

		  AX = 102.950 – 2.479 (16.900) = 61.054

2.	 Given MX = 16.900, mean-centered scores (x) are
	  –.90, –2.90, –.90, –4.90, 1.10,

	  1.10, –3.90, –.90, 1.10, 5.10,

	  1.10, 2.10, –.90, –.90, 5.10,

	 –4.90, 3.10, –2.90, 4.10, .10

	 and Mx = 0, SDx = 3.007, rxY = .686, so with slight 
rounding error
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10.870

.686 2.479
3.007XB

 = =  
	

		  Ax = 102.950 – 2.479 (0) = 102.950

3.	 Given Ŷ  = 2.479 X + 61.054, the predicted scores Ŷ  
are

	 100.719, 95.761, 100.719, 90.803, 

105.677, 105.677, 93.282, 100.719, 

105.677, 115.593, 105.677, 108.156, 

100.719, 100.719, 115.593, 90.803, 

110.635, 95.761, 113.114, 103.198

	 and the residual scores Ŷ  – Y are

	 –.719, –3.761, –12.719, 4.197, –7.677,

	 –4.677, 3.718, –2.719, 4.323, 8.407,

	 –3.677, 6.844, –8.719, 1.281, –11.593,

	 –5.803, 7.365, 9.239, –2.114, 18.802

	 With slight rounding error,

	 2
Ys  = 2

Ŷ
s  + 2

ˆY Y
s −

 = 55.570 + 62.586 = + 118.155

	 2
XYr  = 2

Ys / 2
Ŷ

s  = 55.570/118.155 = .470, so rXY = .686

4.	 Given the descriptive statistics and with slight 
rounding error:

	
2

.686 .499(.272)
.594

1 .272Xb
−

= =
−

	 and 

	
10.870

.594 2.147
3.007XB

 = =  

	
2

.499 .686(.272)
.337

1 .272Wb
−

= =
−

	 and

	
10.870

.337 1.302
2.817WB

 = =  

	 AX, W = 102.950 – 2.147 (16.900) – 1.302 (49.400) = 
2.340

	 2
, .595(.686) .337(.499) .576Y X WR ⋅ = + =

5.	 For N = 20, k = 2 and 2
,Y X WR ⋅  = .576:

	 2
,

20 1ˆ 1 (1 .576) .526
20 2 1Y X WR ⋅

− = − − =  − −

6.	 Presented next is the distribution of standardized 
residuals for the regression of Y on both X and W 
generated in SPSS with a superimposed normal 
curve:

 
 
 
 
 
 
 
 
 
 

Fr
eq

ue
nc

y 

Standardized residual 
−2.0 −1.0 0 1.0 2.0 

3 

4 

0 

1 

2 

 

7.	 For rXY = .686, rWY = .499, rXW = .272, and 
2

,Y X WR ⋅  = .576 with slight rounding error:

		  2
2 2
( ) 2

(.499 .686(.272))
.576 .686 . .105

1 .272Y W Xr ⋅
−

= − = =
− 

	 2 2
2

2 2 2

.576 .686 (.499 .686(.272))
. .199

1 .686 (1 .272 )(1 .686 )WY Xr ⋅
− −

= = =
− − −

	

	 Respectively, variable W uniquely explains about 
10.5% of the total variance in Y, and of variance in 
Y not already explained by X, predictor W accounts 
for about 19.9% of the rest.
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