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STANDARD ERRORS

The standard error is a standard deviation in a sam-
pling distribution, the probability distribution for a 
sample statistic based on all possible random samples 
selected from the same population and each based on 
the same N. The standard error estimates sampling 
error, or the difference between sample statistics and 
the corresponding population parameter. Given con-
stant variability among cases, standard error varies 
inversely with N. This means that distributions of sta-
tistics from larger samples are generally narrower (less 
variable) than distributions of the same statistic from 
smaller samples.

There are textbook formulas for standard errors of 
statistics with simple distributions. By “simple” I mean 
that (1) the statistic estimates a single parameter and (2) 
the basic shape of its distribution does not change as a 
function of that parameter. For example, means have 
simple distributions, and the equation for their standard 
error is

 M N

σ
σ =  (S.1)

where s is the population standard deviation among 
cases. Given s, the value of sM decreases as N increases 
(see Figure S.1). An original normal distribution along 
with two different sampling distributions of means for 
N = 5 and N = 25 are depicted. There is greater varia-
tion of sample means around the population mean m 
when the sample size is smaller. The value of sM must 
be estimated, if s is unknown. The estimator is

 M

SD
SE

N
=  (S.2)

Note that SEM itself has a standard error. This is 
because the value of SEM will vary over random sam-
ples drawn from the same population.

Standard errors for statistics from observed variables 
estimate sampling error under the exacting assump-
tions stated next:

1. The method of sampling is random, or at least hap-
hazard enough to generate representative samples 
over replications.

2. There is no other source of error besides sampling 
error.

Significance Testing Primer

This primer addresses statistical significance testing and the technique of bootstrapping, with special atten-
tion to their roles in SEM. Significance testing has become increasingly controversial over the years. This is 
due both to the inherent limitations of significance testing and to the failure of most researchers to understand 
what statistical significance means. Estimation of confidence intervals (interval estimation) as an alternative 
to significance testing is described. Two different methods for calculating confidence intervals for statistics 
with complex distributions are outlined: noncentrality interval estimation and bootstrapping. Some types of 
fit statistics in SEM are distributed as noncentral test statistics, and bootstrapping is a computer- based resa-
mpling procedure with application in SEM.



2 Significance Testing Primer  

3. Standard errors for parametric statistics often 
assume normality or homoscedasticity.

The problem with the assumptions just stated is that 
they are false in most studies. For example, true ran-
dom sampling requires a list of all members in a popu-
lation, but such lists are rare. Most samples in human 
research are ad hoc (convenience) samples made up of 
participants who happen to be available. What standard 
errors measure in such samples is generally unknown. 
Scores are affected by multiple types of error, including 
sampling error, measurement error, and, in treatment 
outcome studies, implementation error, or deviations 
from a treatment protocol, such as due to poor patient 
or therapist compliance. Other types of error include 
specification error, such as left-out variables error, and 
a host of threats to internal validity (e.g., confounding), 
external validity (e.g., interference due to multiple treat-
ments), and construct validity (e.g., scores are not reli-
able) (Shadish, Cook, & Campbell, 2001). But standard 
errors generally assume that the scores are perfect in 
every way except for the vagaries of random sampling.

The normality assumption refers to population dis-
tributions, but normal distributions in actual studies 
are rare. Many, if not most, empirical distributions are 
not even symmetrical, much less normal, and depar-
tures from normality are often strikingly large (Mic-
ceri, 1989). Geary (1947, p.  214) suggested that the 
disclaimer, “Normality is a myth; there never was, and 
never will be, a normal distribution,” should appear in 
all statistics textbooks. Ratios across different groups 

of largest to smallest variances as large as 8:1 are 
not uncommon (Keselman et al., 1998), so perhaps 
homoscedasticity is a myth, too. Even small departures 
from distributional assumptions can appreciably distort 
standard errors in small or unrepresentative samples. 
There are robust estimators with fewer distributional 
assumptions (Erceg-Hurn & Mirosevich, 2008), but 
their standard errors assume random sampling, too.

CRITICAL RATIOS

The basic form of a significance test is the critical 
ratio, the ratio of a statistic over its standard error. 
Assuming large samples and normality, a critical ratio 
is interpreted as a deviate in a normal curve (z) with a 
mean of zero and a standard deviation that equals the 
standard error. A heuristic is that if | z | > 2.00, the null 
hypothesis (H0) that the corresponding parameter is 
zero is rejected at the .05 level (p < .05) for a two- tailed 
test (H1). The precise value of | z | for the .05 level is 
1.96, and for the .01 level it is 2.58. For example, given

 M = 5.00, SD = 25.00, N = 100,  
  H0: m = 0, and H1: m ≠ 0
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For z = 2.00 and assuming random sampling and no 
other error besides sampling error, p = .046, so the null 
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FIGURE S.1. An original distribution of scores and two distributions of random sample means each based on 
different sample sizes, N = 5 and N = 25.
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hypothesis that the population mean is zero is rejected 
at the .05 level.

In small samples, the ratio M/SEM approximates a t 
distribution, which necessitates the use of special tables 
to determine the critical values of t for the .05 or .01 
levels.1 These distributions are central t distributions 
where the null hypothesis is assumed to be true. Such 
distributions have a single parameter, df, the degrees 
of freedom, which are N – 1 for a single mean. Other 
forms of the t test for means have different df values. 
For instance, df = N – 2, where N is the total number 
of cases when means from two independent samples 
are compared, but all central t distributions assume a 
true null hypothesis. There are central distributions for 
other test statistics, such as F or c2, and tables of criti-
cal values for these familiar test statistics can be found 
in many statistics textbooks and also online.

In some SEM computer programs, standard errors 
are calculated for the unstandardized solution only. 
You can see this fact when you look through the com-
puter output and find no standard errors printed for 
standardized estimates. This means that results of 
significance tests (z) are available only for the unstan-
dardized estimates. Researchers often assume that 
p  values for unstandardized estimates also apply to 
the corresponding standardized estimates. For sam-
ples that are large and representative, this assumption 
may not be unreasonable. But you should know that 
the p  value for an unstandardized estimate does not 
automatically apply to its standardized counterpart. 
This is because standardized estimates have their own 
standard errors, and their critical ratios may not cor-
respond to the same probabilities as the critical ratios 
for the corresponding unstandardized results. This 
explains why you should (1) always report the unstan-
dardized solution including the standard errors and (2) 
not associate p values for unstandardized estimates 
with the corresponding standardized estimates. An 
example follows.

Suppose that the values of an unstandardized esti-
mate, its standard error, and the standardized estimate 
are, respectively, 4.20, 2.00, and .60. In a large sample, 
the unstandardized estimate would be significant at the 
.05 level because z = 4.20/2.00, or 2.10, which exceeds 
the critical value (1.96) at p < .05. Whether the stan-
dardized estimate of .60 is also significant at the same 

1  Within large samples, t and z for the same statistic are essen-
tially equal, and their values are asymptotic in very large sam-
ples.

level is unknown because it has no standard error. Con-
sequently, it would be inappropriate to report the stan-
dardized coefficient as

  .60*

where the asterisk designates p < .05. It is better to 
report both the unstandardized and standardized esti-
mates and also the standard error of the former, like 
this:

  4.20* (2.10) .60

where the asterisk is associated with the unstandard-
ized estimate (4.20), not the standardized one (.60).

POWER AND TYPES 
OF NULL HYPOTHESES

The failure to reject a null hypothesis, such as p ≥ .05 
when testing at the .05 level, is meaningful only if (1) the 
power of the test is adequate and (2) the null hypothesis 
is at least plausible to some degree. Power is the proba-
bility of getting statistically significant results over ran-
dom samples when the null hypothesis is false. Power 
is also the complement of the probability of a Type II 
error (failing to reject H0 when it is false), often desig-
nated as b, so 1 – b = power. Whatever increases power 
decreases b, and vice versa. Power varies directly with 
the magnitude of the population effect size and your 
sample size. Other factors that affect power include:

1. The level of statistical significance a (e.g., 
.05 vs. .01) and the directionality of H1 (i.e., one- or 
two- tailed tests).

2. Whether samples are independent or dependent 
(i.e., between- subjects or within- subjects design).

3. The particular test statistic used.

4. The reliability of the scores.

The following combination generally leads to the great-
est power: a large sample, specification of a = .05, a 
one- tailed (directional) H1, a within- subjects design, a 
parametric test statistic (e.g., t) rather than a nonpara-
metric statistic (e.g., Mann– Whitney U), and scores 
that are very reliable.

Power should be estimated when the study is planned 
but before the data are collected. Some granting agen-
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cies require such a priori estimates of power in applica-
tions for funds. If power is low, there is little point in 
carrying out the study, if outcomes of significance test-
ing are important. For example, if power is only about 
.50, then the likelihood over random samples of reject-
ing a false null hypothesis is no greater than guessing 
the outcome of a coin toss. In this case, tossing a coin 
instead of conducting the study would be just as likely 
to give the correct decision in the long run and would 
save time and money, too.

Unfortunately, only about 10% of researchers report 
the a priori power of their analyses (Ellis, 2010). This 
is a problem because without knowing power estimates, 
one is unable to correctly interpret results that are not 
statistically significant. That is, do such results indi-
cate lack of support for the researcher’s hypothesis or 
just the expected consequence of inadequate power? 
There is free software for power analysis, so the wide-
spread failure to estimate and report power is bewil-
dering.2 How to estimate power in SEM is described in 
 Chapter 10, but power for certain kinds of significance 
tests in SEM is often quite low even in large samples.

The type of null hypothesis tested most often is a nil 
hypothesis, which says that the value of a parameter or 
the difference between two or more parameters is zero. 
A nil hypothesis for the t test of a mean contrast is

 H0: m1 – m2 = 0

which predicts that two population means are exactly 
equal. The problem with nil hypotheses is that it is 
unlikely that the value of any parameter (or difference 
between two parameters) is exactly zero, especially if 
zero means the total absence of an effect or association. 
It is possible for the t test to specify a non-nil hypoth-
esis, such as

 H0: m1 – m2 = 5.0

but doing so is rare in practice. As the name suggests, 
a non-nil hypothesis predicts that a population effect or 
association is not zero.

It is more difficult to specify and test non-nil hypoth-
eses for other test statistics, such as F when compar-
ing three or more means. This is because computer 
programs almost always assume a nil hypothesis. Nil 
hypotheses may be appropriate in new research areas 
where it is unknown whether effects exist at all, but 

2 https://www.gpower.hhu.de/en.html

such hypotheses are less suitable in more established 
areas where it is already known that certain effects are 
not zero. If so, then (1) an implausible nil hypothesis is 
an uninteresting “straw man” argument (a fallacy) that 
is easily rejected, and (2) p values in significance test-
ing are too low. This happens because the data seem 
more exceptional than they really are compared with 
evaluating the same data under a more realistic non-nil 
hypothesis.

SIGNIFICANCE 
TESTING CONTROVERSY

Until recently, significance testing was both routine 
and expected (i.e., everybody did it). But significance 
testing has been increasingly criticized as unscientific 
and unempirical (Kline, 2013; Lambdin, 2012). Some 
authors in statistics reform suggest that overreliance 
on significance testing can lead to trained incapacity, 
or the inability of researchers to understand their own 
results due to inherent limitations of significance tests 
and myriad associated cognitive distortions ( Ziliak & 
McCloskey, 2008). Essential criticisms of significance 
testing are listed next:

1. Outcomes of significance tests—p values— are 
wrong in most studies.

2. Researchers do not understand p values.

3. Most applications of significance testing are incor-
rect.

4. Significance tests do not tell researchers what they 
want to know.

The fact that p values are calculated under implau-
sible assumptions (e.g., random sampling, normality, 
no measurement error) was mentioned earlier in the 
section on standard errors. Distributional assumptions 
are rarely verified because researchers mistakenly 
believe that significance tests are robust even in small, 
unrepresentative samples (Hoekstra, Kiers, & Johnson, 
2013). If assumptions are checked, the wrong methods 
are used, including significance tests that supposedly 
verify distributional assumptions of other significance 
tests, such as Levene’s test for homoscedasticity. The 
problem with such tests is that their results are often 
wrong due in part to their own unrealistic assumptions 
(Erceg-Hurn & Mirosevich, 2008).

Most researchers misinterpret statistical significance. 
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For example, about 80–90% of psychology professors 
endorse false beliefs about statistical significance, no 
better than psychology undergraduate students in intro-
ductory statistics courses (Haller & Krauss, 2002). 
These comparably high rates of misinterpretation sug-
gest an ongoing cycle of misinformation, where instruc-
tors or text books transmit false information to students, 
who then perpetuate the myths to the next generation. 
Most false beliefs about p values involve overinterpre-
tation that favor the researcher’s hypotheses, which is 

a form of confirmation bias—see Topic Box S.1 for a 
review of the “Big Five” misinterpretations of statisti-
cal significance. Exercises 1–3 ask you to comment on 
examples of incorrect definitions of p values.

Most researchers fail to report the power of their sig-
nificance tests. Another misuse comes from treating the 
conventional levels of statistical significance, .05 or .01, 
as golden rules that apply to all studies and disciplines. 
The value of a sets the risk of Type I error, or the prob-
ability over random samples that a true null hypothesis 

TOPIC BOX S.1

Cognitive Errors in Significance Testing
First, we consider the correct interpretation of p values, which is actually quite narrow in scope. They 
represent the conditional probability:

  
 

0 true, random sampling,Result or 
more extreme all other assumptions

Hp

which is the likelihood of a sample result or one even more extreme assuming random sampling under a 
true null hypothesis and where all other assumptions are met (distributional requirements, no error other 
than sampling error, independent and perfectly reliable scores, etc.). Most of what contributes to a p value 
are those even more extreme results that were not actually observed; that is, p values are only partially 
empirical. Two correct interpretations for the case p < .05 are given next. Other correct definitions are 
probably just variations of the ones that follow:

1. Suppose the study were repeated by drawing many random samples from the same population(s) 
where the null hypothesis is true (i.e., every result happens by chance). Less than 5% of these 
hypothetical results would be even more inconsistent with H0 than the actual result.

2. Less than 5% of test statistics from many random samples are further away from the mean of the 
sampling distribution under H0 than the one for the observed result. In other words, the odds are 
less than 1 to 19 of getting a result from a random sample even more extreme than the observed 
one.

Described next are what I call the “Big Five” misinterpretations of p values. The odds against 
chance fallacy is the false belief that p indicates the probability that a particular result happened by 
chance (i.e., due to sampling error). Remember that p is calculated for a range of results, most unobserved, 
and not for any single result. Also, p is calculated assuming that H0 is already true, so the probability that 
sampling error is the only explanation is already taken to be 1.0. Thus, it is illogical to view p as measuring 
the likelihood of sampling error. Besides, the probability that sample results are affected by error of some 
kind— sampling, measurement, or specification error, among others— is virtually 1.0. From this perspective, 
virtually all sample results are wrong (Ioannidis, 2005). That is, our data routinely lie, they lie through 
multiple types of error, and it is only when results are averaged over studies, such as in the technique of 

(continued)
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will be rejected, but Type II error is often more seri-
ous. An example is when a nil hypothesis is known to 
be false before even collecting the data. In this case, 
the effective level of a is zero, and Type II error is the 
only possible kind of error. Another example is when 
a treatment for an illness is beneficial, but the results 
are not significant at p < .05, the highest conventional 
level of a. Type II error in this context means that a 
beneficial treatment is not detected. There is actually 
no requirement to specify an arbitrary level of a (i.e., 
.05 or .01) that does not properly balance the risk of 
Type I error against that of Type II error (Hurlbert & 
Lombardi, 2009).

Armstrong (2007) argued that significance testing 
does not foster progress in science even if such tests 
are properly conducted. This is because their results do 
not tell researchers what they wish to know, including 
the likelihood that some hypothesis is true, given the 
data; the probability that a Type I error has occurred, 
given that the null hypothesis was just rejected; the 
prospects for replication; and whether the findings are 
actually important. An alternative is to describe repli-
cated results in terms of their effect sizes and precisions 
(confidence intervals) and interpret their substantive 
significance using language relevant to stakeholders 
in a particular research context (Aguinis et al., 2010). 

Given all the problems just considered, significance 
testing is actually banned in some research journals 
such as Basic and Applied Social Psychology (Trafi-
mow & Marks, 2015). See also the special edition on 
significance testing in the journal American Statisti-
cian (Wasserstein et al., 2019).

CONFIDENCE INTERVALS 
AND NONCENTRAL 
TEST DISTRIBUTIONS

Interval estimation is an alternative to significance test-
ing. It involves reporting effect sizes with confidence 
intervals (error bars, margins of error) that indicate a 
range of results considered equivalent within the limits 
of sampling error to the specific result found (i.e., the 
point estimate). For statistics with simple distributions, 
the width of either side of a

 100 × (1 – a) %

confidence interval is determined by the product of the 
standard error and the critical value of a central test 
statistic at the a level of statistical significance for a 
two- tailed alternative hypothesis. For example, given

meta- analysis, that some of these errors begin to cancel out. Significance testing in individual studies in no 
way helps in this process.

The local Type I error fallacy for the case where p < .05 and a = .05 (i.e., H0 is rejected) says 
that the likelihood that the decision just taken to reject the null hypothesis is a Type I error is less than 5%. 
This belief is false because any particular decision to reject H0 is either correct or incorrect, so no prob-
ability (error other than 0 or 1.0) is associated with it. Only with sufficient replication could we determine 
whether or not the decision to reject H0 in a particular study was correct. The inverse probability 
fallacy is the false belief that p is the probability that the null hypothesis is true. This error stems from 
forgetting that p values are probabilities of data under the null hypothesis, not the other way around.

Two other fallacies concern the complements of p values, or 1 – p. The valid research hypoth-
esis fallacy is the false belief that 1 – p is the probability that the alternative hypothesis is true. The 
quantity 1 – p is a probability, but it is just the likelihood of getting a result even less extreme under H0 
than the one actually found. The replicability fallacy is that 1 – p is the likelihood of finding the 
same result in another random sample. If this fallacy were true, knowing the likelihood of replication would 
be very useful. Unfortunately, p is just the probability of data in a particular sample under a specific null 
hypothesis. In general, replication is a matter of experimental design and whether some effect actually 
exists in the population (i.e., it is an empirical question). Kline (2013, chap. 4) describes additional false 
beliefs about p values.
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 M = 100.00, SD = 9.00, N = 25, and SEM = 1.80

the 95% confidence interval is

 100.00 ± (1.80) t2-tail, a = .05 (24)

where t2-tail, a = .05 (24) is the positive two- tailed critical 
value in a central t distribution at the .05 level of statis-
tical significance, which for df = 24 is 2.064.3 The 95% 
confidence interval is thus

 100.00 ± 1.80 (2.064), or 100.00 ± 3.72

which defines the interval [96.28, 103.72]. This inter-
val specifies a range of values considered equivalent 
to the observed mean within the limits of sampling 
error at the 95% confidence level. The point estimate 
of 100.00 falls at the exact center of the interval, and 
the whole interval explicitly conveys the idea that a 
margin of error is associated with the corresponding 
statistic (100.00). Note that the interval [96.28, 103.72] 
is based on a single estimate of sM, or SEM = 1.80. But 
this quantity (1.80) is itself just a point estimate, and the 
value of SEM in a different sample will almost certainly 
not be 1.80. This means that the interval [96.28, 103.72] 
is actually too narrow (i.e., more precise than it seems), 
if we also consider sampling error in SEM.

Because confidence intervals are based on the same 
standard errors as significance tests—and rely on the 
same unrealistic assumptions— researchers should not 
overinterpret their lower or upper bounds. Suppose a 
95% confidence interval based on M = 2.50 is [0, 5.00], 
which includes zero. This fact can be misinterpreted, 
such as wrongly concluding that m = 0. But zero is only 
one value within a range of estimates, so it has no spe-
cial status. This means that the hypothesis that m = 0 is 
not favored any more than the hypothesis that m = 5.00 
(or that m equals any other value in the range 0–5.0). 
Confidence intervals are subject to sampling error, too, 
so zero may not fall within the 95% confidence interval 
in a replication sample. Do not believe that confidence 
intervals are just significance tests in disguise (Thomp-
son, 2006). This is because null hypotheses are required 
for significance tests, but not for confidence intervals, 
and many null hypotheses have little scientific value.

Statistics with complex distributions may not follow 
central distributions. For example, if r2 = 0 (i.e., the 

3  See the calculating webpage at https://www.usablestats.com/
calcs/tinv

squared population correlation is zero), then distribu-
tions of R2 follow central F distributions with k and 
N – k – 1 degrees of freedom, where k is the number 
of predictors. Central F distributions assume r2  =  0 
and provide the critical values for the familiar F  test 
in multiple regression or ANOVA. But if r2 > 0, the 
sampling distribution for R2 is defined by noncentral 
F distributions, which have an additional parameter, 
called the noncentrality parameter. This parameter 
indicates the degree to which the null hypothesis that 
r2 = 0 is false. Noncentral F distributions take the form

 F (k, N – k – 1, l) (S.3)

where l is the noncentrality parameter. The latter is 
related to r2 and the sample size, or

 
2
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N
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 (S.4)

If r2 = 0, then l = 0, which indicates no departure from 
the nil hypothesis. Equation S.4 can be rearranged to 
express r2 as a function of l and the sample size:

 2

N

λ
ρ =

+ λ
 (S.5)

Presented in Figure S.2 are two F distributions 
where the degrees of freedom are 5 and 20. For the 
central F distribution in the left part of the figure, 
l = 0. But l = 10.0 for the noncentral F distribution 
in the right side of the figure. Note in the figure that (1) 
both distributions are positively skewed, but the cen-
tral F distribution has greater skew than the noncentral 
F distribution. Also, (2) the noncentral F distribution 
has a greater expected value—the weighted average 
of all possible values— than the central F distribution. 
This is because the noncentral F distribution in the fig-
ure assumes that r2 > 0, but the central F distribution 
is for r2 = 0.

Steiger and Fouladi (1997) showed that if we can 
obtain a confidence interval for l, we can also obtain a 
confidence interval for r2 using Equation S.5. To do so, 
we use a computer tool that finds lL, the lower bound 
of the confidence interval for l. For the 95% level, the 
lower bound lL equals the value of l for the noncen-
tral F distribution in which the observed F falls at the 
97.5th percentile. The upper bound lU equals the value 
of l for the noncentral F distribution in which the 



8 Significance Testing Primer  

observed F falls at the 2.5th percentile. But we need to 
find which particular noncentral F distributions are the 
most consistent with the data, and this is the problem 
solved with the right computer tool. An example fol-
lows.

I used J. Steiger’s Noncentral Distributional Calcu-
lator (NDC), a freely available Windows application 
for noncentrality interval estimation.4 For the data in 
Table R.1 (see the Regression Primer)

 2
,Y X WR ⋅  = .576, N = 20, and F (2, 17) = 11.536

We can say the observed F of 11.536 falls at the

1. 97.5th percentile in the noncentral F (2, 17, 4.190) 
distribution; and the same observed F falls at the

2. 2.5th percentile in the noncentral F (2, 17, 52.047) 
distribution.

For these data, the 95% confidence interval for l is 
[4.190, 52.047]. Using Equation S.5 to convert the lower 
and upper bounds of this interval to r2 units for N = 20 
gives us the noncentral 95% confidence interval based 
on R2 = .576, which is [.173, .722]. (You should verify 
these results.) The interval just reported is not symmet-
rical about R2 = .576, but this is expected in noncentral-
ity interval estimation. Exercise 4 asks you to calculate 

4 http://www.statpower.net/Software.html

the 95% noncentral confidence interval based on the 
same value of R2 but in a larger sample.

There are noncentral distributions for other test sta-
tistics, such as t and c2, and they all assume that the null 
hypothesis is false by the degree indicated by the value 
of the noncentrality parameter. The latter equals zero in 
central test distributions, so central test distributions are 
just special cases of noncentral test distributions (i.e., 
they belong to the same distribution family). Noncen-
tral test distributions play an important role in certain 
types of statistical analyses. Computer programs that 
estimate the power of significance tests as a function of 
study characteristics and the predicted effect size ana-
lyze noncentral distributions. This is because the con-
cept of power assumes that the null hypothesis is false, 
and it is false by the degree indicated by a nonzero effect 
size. The latter generally corresponds to a value of the 
noncentrality parameter that is also not zero.

Another application is the estimation of confidence 
intervals based on sample statistics that measure effect 
size besides R2. For example, distributions of stan-
dardized mean differences (d), or the ratio of a mean 
contrast over the standard deviation, generally follow 
central t distributions when the corresponding param-
eter is zero; otherwise, d statistics are distributed as 
noncentral t distributions. There are special computer 
programs for noncentrality interval estimation based 
on d  statistics (Cumming & Calin-Jageman, 2017). 
Effect size estimation also generally assumes that the 
null hypothesis— especially when it is a nil hypothe-
sis— is false.
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FIGURE S.2. Distributions of central F and noncentral F for 5 and 20 degrees and where the noncentrality parameter (l) 
equals 0 for central F and l = 10.0 for noncentral F.
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Some measures of model fit in SEM are based on 
noncentral c2 distributions. These statistics measure 
the degree of approximate (close) fit, which allow 
for an “acceptable” amount of departure from exact 
(perfect) fit. What is considered “acceptable” depar-
ture from perfection is related to the value of the non-
centrality parameter for the c2 that the computer cal-
culates for the model and data. Other fit statistics in 
SEM measure the departure from exact fit, and these 
statistics are generally described by central c2 distri-
butions, where the null hypothesis that the model has 
perfect fit in the population is assumed to be true. But 
the null hypothesis just stated is assumed to be false 
by statistics that measure approximate fit. Assessment 
of model fit against these two standards, approximate 
versus exact, is covered later in Chapter 10.

BOOTSTRAPPING

The technique of bootstrapping was developed by the 
statistician B. Efron in the 1970s (e.g., 1979). It is a 
computer- based method of resampling that combines 
the cases in a data set in different ways to estimate sta-
tistical precision. Perhaps the best known form is non-
parametric bootstrapping, which generally makes 
no assumptions other than that the distribution in the 
sample reflects the basic shape of that in the popula-
tion. This method treats your sample (i.e., data file) as a 
pseudo- population in that cases are randomly selected 
with replacement to generate other data sets, usually of 
the same size as the original. Because of sampling with 

replacement, (1) the same case can be selected in more 
than one generated data set or at least twice in the same 
generated sample, and (2) the composition of cases will 
vary slightly across the generated samples.

When repeated many times (e.g., 500) by the com-
puter, bootstrapping simulates random sampling with 
replacement. It also constructs an empirical sampling 
distribution, the frequency distribution of the values 
of a statistic across generated samples. Nonparametric 
bootstrapped confidence intervals are calculated in 
the empirical distribution. For example, the lower and 
upper bounds of a 95% bootstrapped confidence inter-
val correspond to, respectively, the 2.5th and 97.5th 
percentiles in the empirical sampling distribution. 
These limits contain 95% of the bootstrapped values of 
the statistic. This method is potentially useful for sta-
tistics with complex distributions. An example follows.

I used the nonparametric Bootstrap procedure 
of SimStat for Windows (Version 2.6.1) (Provalis 
Research, 1995–2011) to resample from the data in 
Table R.1 (see the Regression Primer) in order to gener-
ate a total of 500 bootstrapped samples each with 20 
cases.5 Presented in Figure S.3 is the empirical sam-
pling distribution of R2 across all generated samples. 
SimStat reported that the mean of this distribution is 
.626, the median is .630, and the standard deviation 
is .102. The first result (.626) is close to the observed 
value of R2 = .576 for these data, which is expected.

The nonparametric bootstrapped 95% confidence 
interval in the empirical sampling distribution for this 

5https://provalisresearch.com
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example is [.425, .813]. This result from bootstrapping 
is quite different from the noncentral 95% confidence 
interval we calculated earlier for the same data, or 
[.173, .722], but bootstrapped results in small samples 
can be very inaccurate. This is because bootstrapping 
can magnify the effects of unusual features in a small 
data set. Note that the computer will generate a differ-
ent empirical sampling distribution for the same data, if 
each time it is given a different seed, or a long number 
(vector) used to initiate simulated random sampling. 
Consequently, any result in a single application of non-
parametric bootstrapping is not generally unique.

A raw data file is needed for nonparametric boot-
strapping. This is not true in parametric bootstrap-
ping, where the computer randomly samples from 
a theoretical probability density function specified 
by the researcher. When repeated many times by the 
computer, values of statistics in synthesized samples 
vary randomly about the specified parameters, which 
simulates sampling error. Parametric bootstrapping is 
a kind of Monte Carlo method that is used in computer 
simulation studies of the properties of estimators. Dis-
tributional assumptions can be added incrementally in 
parametric bootstrapping or successively relaxed over 
the generation of synthetic data sets.

Several SEM computer tools, including Amos, EQS, 
LISREL, Mplus, Stata, and lavaan for R, feature 
bootstrap methods. Some of these methods can estimate 
standard errors or generate confidence intervals based 
on certain estimators, such as statistics that measure 
model–data correspondence or indirect causal effects 
(Hancock & Liu, 2012). Parametric bootstrapping 
methods are used in SEM to conduct simulation studies, 
such as for power analysis, sample size determination, 
and hypothesis testing (Bandalos & Gagné, 2012).

SUMMARY
Statistical significance is not a gold scientific standard, 

and thinking about data analysis as a search for whether 
results are “significant” or “not significant” may be 
fruitless. This is because the presence of statistical sig-
nificance does not reliably signal that results are note-
worthy or even of mild interest, just as the failure to 
find statistical significance does not indicate that noth-
ing of interest was found. It is also true that many, and 
perhaps most, researchers do not understand what sta-
tistical significance really means. Researchers should 
instead think more about whether observed effect sizes 
are precise and large enough to be of substantive inter-
est. Keeping a skeptical view of significance testing 
will help you in SEM—and in other kinds of com-
plex multivariate analyses, too—to avoid getting lost 
in a blizzard of asterisks. Also reviewed in this primer 
was the logic of noncentrality interval estimation and 
bootstrapping, both of which can be used to calculate 
confidence intervals based on statistics with complex 
distributions, including some that are used in SEM.

LEARN MORE

Kline (2013, chap. 4) describes additional cognitive errors 
about statistical significance, and Lambdin (2012) and Ziliak 
and McCloskey (2008) offer strong critiques of significance 
testing.

Kline, R. B. (2013). Beyond significance testing: Statistics 
reform in the behavioral sciences. Washington, DC: 
American Psychological Association.

Lambdin, C. (2012). Significance tests as sorcery: Science 
is empirical— significance tests are not. Theory and Psy-
chology, 22, 67–90.

Ziliak, S., & McCloskey, D. N. (2008). The cult of statistical 
significance: How the standard error costs us jobs, jus-
tice, and lives. Ann Arbor: University of Michigan Press.

EXERCISES

Explain what is wrong versus right in each definition of 
statistical significance listed next. 

1. The statistical significance of a result is an esti-
mated measure of the degree to which it is true (in 

the sense of “representative of the population”). 
More technically, the value of the p level represents 
a decreasing index of the reliability of a result. The 
higher the p level, the less we can believe that the 
observed relation between variables in the sample 
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is a reliable indicator of the relation between the 
respective variables in the population. Specifically, 
the p-level represents the probability of error that is 
involved in accepting our observed result as valid, 
that is, as “representative of the population.”

2. This is a very important and common term in psy-
chology, but one that many people have problems 
with. Technically, statistical significance is the 
probability of some result from a statistical test 
occurring by chance. . . . Most often, psychologists 
look for a probability of 5% or less that the results 
are due to chance, which means a 95% chance the 
results are “not” due to chance.6

6 https://www.alleydog.com/glossary/definition.php?term= 
Statistical+Significance

3. The calculation of statistical significance is subject 
to a certain degree of error. The researcher must 
define in advance the probability of a sampling 
error. Sample size is an important component of 
statistical significance in that larger samples are 
less prone to flukes. Only random, representative 
samples should be used in significance testing.

4. Calculate the 95% noncentral confidence interval 
for 2

,Y X WR ⋅  = .576, F (2, 47) = 31.925, and N = 50 
using a computer tool for noncentrality interval 
estimation.

ANSWERS

Comments about the selected quotes: 

1. Representativeness is determined by how cases are 
selected, which has nothing to do with statistical 
significance. If “reliability” means “repeatability,” 
then statistical significance does not directly indi-
cate the likelihood of replication. But if “reliabil-
ity” means “sampling error,” then, yes, there is less 
sampling error over larger random samples. Also, 
p is not the probability of error, which is virtually 
1.0 for sample results, and neither is p the probabil-
ity that the null hypothesis is true.

2. This is a restatement of the odds against chance 
fallacy. A p value does not indicate the likelihood 
that a particular result is due to chance, nor does 
1 – p measure the probability that the data are due 
to any “real” effect. All sample results are affected 
by error.

3. The probability of sampling error is virtually 1.0 
and thus cannot be specified in advance. The level 

of α is specified by the researcher in advance, but 
there is actually no requirement to specify an arbi-
trary criterion level of statistical significance. The 
rest of the quote is correct, including the claim that 
significance testing assumes random sampling.

4. I used the NDC calculator for this problem. We can 
say that F (2, 47) = 31.925 falls at

a. 97.5th percentile in the noncentral F (2, 47, 
28.573) distribution; and the same observed F 
falls at the

b. 2.5th percentile in the noncentral F (2, 17, 
109.201) distribution.

So the 95% confidence interval for λ is [28.573, 
109.201]. Using Equation S.4 to convert the lower 
and upper bounds of this interval to ρ2 units for 
N  =  50 gives us the noncentral 95% confidence 
interval based on R2 = .576, which is [.364, .686]. 
As expected, this interval is narrower than the cor-
responding interval based on N = 20, which is [.173, 
.722].
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