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The Three-Parameter Model

In this chapter we present a model for addressing chance success on an item. This chance 
success is reflected in an IRF with a nonzero lower asymptote. To model this lower 
asymptote, we extend the 2PL model to produce the three-parameter model. Parallel to 
the structure of the chapters discussing the 1PL and 2PL models, we present examples 
of a three-parameter model calibration using the mathematics data set introduced in 
Chapter 2.

Through the previous chapters we have developed a “toolbox” of model-fit tech-
niques. This toolbox includes methods for assessing the tenability of various assump-
tions. To summarize these approaches, the unidimensionality assumption can be 
assessed using nonlinear factor analysis, linear factor analysis, and structural equation 
modeling. We can assess the tenability of the functional form assumption by examining 
the empirical IRFs. Moreover, model–data fit can be assessed through fit statistics (e.g., 
INFIT, OUTFIT, M2), comparing the predicted and empirical IRFs, as well as by obtain-
ing evidence of item parameter estimate invariance through the use of several statistics 
(e.g., correlations, RMSD, UA22). We have also examined person fit through fit statistics.

In this chapter we add to our toolbox. Specifically, (1) we introduce the likelihood 
ratio, AIC, and BIC statistics for making model comparisons, (2) we use Q3 for assess-
ing the tenability of the conditional independence assumption, and (3) we discuss the 
appropriateness of a person’s estimated location as a measure of their true location. 
Although for pedagogical reasons we present the model-fit techniques separately, in 
practice they would be used collectively. The last topic we cover in this chapter is the 
handling of missing data.

Conceptual Development of the Three-Parameter Model

Individuals at the lower end of the latent continuum may be expected to have a high 
probability of providing a response of 0. For example, examinees who have low math-
ematics proficiency may be expected to incorrectly respond to, say, a topology question 
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on a mathematics examination. If this mathematics examination uses a multiple-choice 
item format, then some of these low-proficiency individuals may select the correct 
option simply by guessing. Similarly, people low in neuroticism who are administered 
a neuroticism inventory using a true/false response format may be expected to respond 
“False” to a question depicting a neurotic behavior. However, owing to inattention or 
fatigue, some of these individuals may respond “True” to the question. In these cases, 
the item’s response function has a lower asymptote that may not be asymptotic with 0.0 
but may be with some nonzero value. The three-parameter model addresses this non-
zero lower asymptote.

To develop the three-parameter model, we need to be concerned with two cases. 
The first case is, “What is the probability of a response of 1 on an item when an indi-
vidual responds consistent with their location θ?” Our answer is that the probability of a 
response of 1 is modeled by the 2PL model. Conversely, the probability of a response of 0 
(i.e., p(xj = 0 | θ, δ)) when an individual responds consistent with their location θ is given 
by (1 – pj); Figure 2.12 depicts these two functions. The p(xj = 0 | θ, δ) response function 
has a lower asymptote of 1 and an upper asymptote of 0. That is, as θ approaches –∞, 
the event “a response of 0” is almost certain to occur.

The second case to consider is, “What should be the probability of a response of 1 
on an item due to chance alone?” To answer this question, let us symbolize this prob-
ability as χj. In other words, when a person can be successful on item j regardless of the 
person’s location, then the corresponding probability is given by χj. To determine the 
pseudo-random guessing response function, we need to consider χj and the probability 
of a response of 0 given the 2PL model (i.e., p(xj = 0 | θ, δ) = [1 – pj]). Noting that the event 
“a response of 1 due to chance alone” is independent of the event “a response of 0 given 
θ” allows us to apply the multiplication rule. That is, when a person can be successful 
on item j on the basis of chance alone the probability is given by the pseudo-random 
guessing response, χj[1 – pj]. Multiplying by [1 – pj] transforms the lower asymptote of 
p(xj = 0 | θ, δ) to equal χj. Thus, as θ goes to –∞, pj approaches 0.0 and χj[1 – pj] simplifies 
to χj. Conversely, as θ goes to ∞, pj approaches 1.0 and χj[1 – pj] approaches 0.0. Thus, 
the probability of a response of 1 for an individual with an infinitely low location is χj.

Putting these two (mutually exclusive) cases together, we obtain the probability of 
a response of 1

 * (1 )j j j jp p pχ= + − , (6.1)

where pj is given by the 2PL model. Equation 6.1 may be rearranged to be

 * (1 )j j j jp pχ χ= + − . (6.2)

By substitution of the 2PL model for pj, we obtain the three-parameter logistic (3PL) 
model
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One can view Equation 6.3 from a slightly different perspective than above and 
explain why Equation 6.2 is not simply χj + pj. The effect of the term (1 – χj) compresses 
the 2PL model’s IRF to range from zero to (1 – χj). By adding χj to this compressed IRF 
(i.e., Equation 6.3), we transform the IRF to have a range from χj to 1.0. One implication 
of this compression is that it effectively reduces the IRF’s slope.

Although, strictly speaking, Equation 6.3 is not in logistic form, it is referred to as 
a logistic model. (Because there is a normal ogive version of the three-parameter model, 
Equation 6.3 is sometimes presented, incorporating the scaling factor D.) As is the case 
with the 1PL and 2PL models, δj represents item j’s location and αj reflects its dis-
crimination parameter. The additional parameter, χj, is referred to as the item’s pseudo-
guessing or pseudo-chance parameter and equals the probability of a response of 1 when θ 
approaches –∞ (i.e., χj = p(xj = 0 | θ, → –∞). As such, χj represents the IRF’s lower bound 
or asymptote. With the 3PL model, there are three parameters characterizing the item j 
(i.e., αj, δj, χj) plus a person parameter.

The 3PL model is based on the same assumptions discussed in Chapter 2 with the 
1PL model. Recall that these assumptions are a unidimensional latent space, conditional 
independence, and a specific functional form. For brevity we use pj instead of p(xj = 1 | θ, 
αj, δj, χj) in the following.

Examples of the 3PL model’s IRF are given in Figure 6.1. The two items shown have 
the same discrimination and location parameters, but they have different χjs. For item 1 
χ1 = 0.1 and for item 2 χ2 = 0.05. We see that the IRFs have nonzero lower asymptotes 

FIGURE 6.1. 3PL model IRFs for two items with α1 = 1.5, δ1 = 0.0, χ1 = 0.1, and α2 = 1.5, δ2 = 0.0, 
χ2 = 0.05.
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and that each IRF is asymptotic with its corresponding χj value. In addition, we see that 
item 1 with the larger χj has the higher IRF. In general, as χj increases, so does pj, all 
other things being equal. In the context of proficiency assessment, this means that items 
with larger χjs are easier than those with smaller χjs. The figure shows that the valid 
range for χj is 0.0 to 1.0.

As is the case with the 1PL and 2PL models, the IRF’s slope is at a maximum at the 
item j’s location. This point of inflexion occurs midway between the lower and upper 
asymptotes. The lower asymptote is the floor of the IRF and represents the smallest 
probability for a response of 1, whereas the upper asymptote is the ceiling for the IRF 
and reflects the largest probability of a response of 1. If we let ϒj denote item j’s upper 
asymptote, then a general expression for determining the midpoint (i.e., the probability 
at δj) for any of our dichotomous models is (ϒj + χj)/2. For example, with the 1PL and 
2PL models, the lower asymptote is 0 and the upper asymptote is 1. Therefore, for the 
1PL and 2PL models we have that χj = 0.0, ϒj = 1.0, and the probability of a response of 1 
at δj is (1 + 0.0)/2 = 0.50. For the 3PL model, if χj > 0.0, then the probability of a response 
of 1 at δj is greater than 0.50. For example, if χj = 0.20 and ϒj = 1.0, then the probability 
of a response of 1 at δj is (1 + χj)/2 = (1 + 0.2)/2 = 0.6.1 Moreover, as is true with the 1PL 
and 2PL models, the 3PL model’s discrimination parameter is proportional to the slope 
at the inflexion point. However, the relationship between αj and the slope now involves 
χj. Specifically, the slope for the 3PL model is 0.25αj (1 – χj).

2 Therefore, an item’s discrimi-
natory effectiveness is affected by the magnitude of χj. Specifically, as χj increases, an 
item’s discriminatory effectiveness decreases, all other things being equal. For example, 
we see from Figure 6.1 that item 1’s discriminatory effectiveness (reflected in its IRF’s 
slope) is less than that of item 2.

Additional Comments  
about the Pseudo-Guessing Parameter, χχ

J

Our first comment is about the different labels used for χj. Originally, χj was referred to 
as the item’s guessing parameter (e.g., Lord, 1980, p. 12). However, because χj is typically 
lower than what would be predicted by a random guessing model (i.e., the reciprocal 
of the number of multiple-choice options), χj is now referred to as the pseudo-guessing 
parameter. This difference between χj and the random guessing model prediction is 
due to differential option attractiveness. That is, the random guessing model assumes 
that all options are equally attractive. Yet we know from traditional item analyses that 
item alternatives vary in their degree of attractiveness to persons. For instance, using 
keywords in alternatives is a typical tactic to increase the attractiveness of alternatives. 
Moreover, test-taking preparation instructs examinees who do not know the answer to a 
question to select the longest option because it is usually the correct response. As such, 
the random guessing model’s assumption is not reflected in the response data.

Our second comment concerns the nature of χj. As mentioned earlier, χj’s function 
is to reflect that some individuals with infinitely low locations may obtain a response of 
1 when, according to the 2PL model, they should not. These responses are a manifesta-
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tion of the interaction between person and item characteristics (including item format). 
In the case of proficiency instruments, person characteristics include not only a per-
son’s θ, but also their test-wiseness and “risk-taking” tendencies. These last two fac-
tors are tangential latent person variables. Therefore, although χj is considered to be an 
item parameter, it may be more reflective of a person characteristic (i.e., another person 
parameter) than of an item characteristic or, at least, an interaction between person and 
item characteristics.

Our final comments concern the implicit assumption made by the use of χj and 
the effect of χj on estimation. In regard to the former, we see from Equation 6.3 that the 
presence of χj in the model assumes that, regardless of a person’s location, their pro-
pensity to “guess” is constant across the continuum (i.e., χj does not vary as a function 
of θ). This assumption may or may not be reasonable in all situations. With respect to 
effects, nonzero χjs lower the estimate of a person’s location (Wainer, 1983) and reduce 
the amount of item information.3 Thus, although we are modeling nonzero χjs, it is very 
desirable that our χjs be close to zero. Of course, in this case the 2PL model may provide 
a sufficiently reasonable representation of the data.

Conceptual Parameter Estimation for the 3PL Model

The estimation of item parameters proceeds as discussed in previous chapters. How-
ever, unlike the 1PL and 2PL models, the 3PL model does not have sufficient statistics 
for parameter estimation (Baker, 1992; Lord, 1980). The log likelihood surface for an 
item with three item parameters would require four dimensions to graphically represent 
it. However, the general idea can be represented as a series of static multiple surfaces 
similar to the one presented in Figure 5.3, but with each surface slightly different from 
the others and associated with a particular value of χj (e.g., 0.0, 0.01, 0.02). (Obviously, 
the discrete nature of this series of surfaces does not accurately reflect the continuous 
nature of χj.) The essence of the estimation process would be to identify across these 
“multiple surfaces” the values of αj, δj, and χj that maximize the log likelihood for an 
item.4

In some cases, distinguishing between these multiple surfaces may be problematic. 
For instance, if there are insufficient data at the lower end of the continuum, then there 
may be multiple sets of αj, δj, and χj that account for the data. As such, the correspond-
ing IRFs are similar to one another in this region (cf. Mislevy, 1986a). As an example, 
assume that in a given calibration sample everyone is located above –1. As a result, there 
is insufficient data to estimate the lower asymptote. Figure 6.2 presents two IRFs that 
can account for empirical data. One IRF is based on α = 0.8, δ = –0.05, and χ = 0.435, 
whereas the other has the item parameter values of α = 0.56, δ = –1.8, and χ = 0.0. As 
can be seen, these two IRFs are very similar to one another above –1 and, in fact, dif-
fer by less than 0.01 in the θ range –1 to 1 and by less than 0.018 in the range –1 to 3. 
Without additional information (e.g., persons located around –3, or prior information), 
it is not possible to determine whether χj should be 0.435 or 0. In terms of our “multiple 
surfaces” analogy, this means that we cannot distinguish between the log likelihood 
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surface associated with χ = 0.435 and the one when χ = 0.0. Therefore, if the respondents 
are located above –1, it is difficult to determine which of these two sets of item param-
eter estimates is “best,” and so we have difficulty obtaining a converged solution for the 
item.5

In general, the estimation of χj may be problematic for some items because of the 
paucity of persons at the lower end of the continuum; because the items are located at 
the lower end of the continuum (e.g., very easy items); and/or because the items have 
low estimated discrimination parameters. Problems in estimating χj can influence the 
estimation of the item’s other parameters. In these situations, a criterion may be used 
to determine whether χj should be estimated. For instance, LOGIST used the “stability” 
criterion of (δj – 2/αj). Specifically, χj is estimated only when (δj – 2/αj) > –2.5; –2.5 is 
the default value and may be changed. The stability criterion is the location on the θ 
continuum “at which the proportion of correct responses is only about 0.03 above the 
lower asymptote” (Wingersky et al., 1982, p. 21). Alternative strategies are to fix χj to 
a specific value or to impose a prior distribution. With respect to the former, the selec-
tion of a constant (common) value for χ may be done arbitrarily (e.g., LOGIST’s [1/m – 
0.05] where m is the number of item options), by averaging the nonproblematic   �χjs, by 
averaging the   �χjs for items located at the lower end of the continuum, or by fixing the 
lower asymptote to some nonzero value determined by inspecting the lower asymptote 
of empirical IRFs.

FIGURE 6.2. 3PL model IRFs when α1 = 0.8, δ1 = –0.05, χ1 = 0.435 and when α2 = 0.56, δ2 = –1.8, 
χ2 = 0.0.
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We may also use a prior distribution with χj. de Gruijter (1984) has demonstrated 
that the use of a prior distribution for estimation of χj can lead to reasonable parameter 
estimates for the model. The regression toward the mean phenomenon that typically 
occurs when using a prior distribution is not as problematic in estimating χj as it is 
when estimating person and item location parameters (Lord, 1986). In general, we 
recommend use of a prior on the   �χjs as the first strategy to facilitate estimating the 
lower asymptote.

In regard to the item’s other parameters, empirical data calibration has shown that 
the   �αjs and   �δs are nonlinearly related and, typically, have a positive correlation (Lord, 
1975). In addition, Lord found that items with   �δs less than about –0.5 almost never 
have   �αs greater than 1 and that items located above 0.5 almost always have   �αs greater 
than 1.0. In this regard, we examined the calibration results from the reading and math-
ematics tests from the National Education Longitudinal Study, 1988 (NELS: 88; Ingels, 
Scott, Rock, Pollack, & Rasinski, 1994) base year, and found the correlation between 
the   �αs and the   �δs is 0.25 for the reading test and 0.59 for the mathematics test, the 3PL 
model calibration used LOGIST; also see Yen (1987). Baker and Kim (2004) present the 
mathematics for estimating the three item parameters, and a Bayesian estimation proce-
dure is presented in Swaminathan and Gifford (1986).

So far we have been concerned with item parameter estimation. We now turn our 
attention to person parameter estimation. Any of the methods that were previously dis-
cussed, such as MLE or EAP, could be used. However, in some cases the use of unre-
stricted MLE for person location estimation may encounter problems. For example, 
Samejima (1973a) showed that there is not a unique solution for θ for every possible 
response pattern under the three-parameter model. For these problematic response pat-
terns, the likelihood function may have more than one maximum. For example, assume 
we have a two-item instrument with α1 = 2.0, δ1 = 0.0, χ1 = 0.25 for the first item and 
α2 = 1.0, δ2 = –0.5, χ2 = 0.0 for the second item. On these two items, assume that a 
person has a response of 1 on item 1 and a response of 0 on item 2 (Samejima, 1973a). 
Assuming a proficiency testing situation, then this response pattern reflects a person 
correctly answering the “harder/more discriminating” item (possibly by guessing) and 
incorrectly answering the “easier/less discriminating” item. The corresponding likeli-
hood function is presented in Figure 6.3.

As we see, the likelihood function has a local maximum at approximately –0.05, 
and as θ becomes progressively smaller, the likelihood function begins to approach 
an asymptote of 0.25. Therefore, this likelihood function is asymptotic with a value of 
0.25 and without a unique person location estimate. Stated another way, these types of 
response vectors do not have a global maximum and have multiple maxima. In these 
cases, the use of standard MLE with the three-parameter model may yield a   �θ that 
turns out to be a local, not a global, maximum. When a local maximum is suspected, 
then using a different starting/provisional estimate for the MLE algorithm (see Appen-
dix A) might produce a different   �θ. (In fact, the presence of multiple solutions for a 
given response vector is evidence that one or more of the solutions represent local 
maxima.)
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Although the example only uses two items, Samejima (1973a) speculated that “the 
likelihood function may be more complicated, with possibly more than one local maxi-
mum in addition to a terminal maximum” (p. 225). We have empirical support for the 
occurrence of multimodal likelihood functions from the work of Yen, Burket, and Sykes 
(1991). Specifically, in an analysis of 14 empirical data sets they found that as many as 
3.1% of the examinees had response vectors whose likelihood functions had multiple 
maxima (cf. Fischer, 1981).

The multimodal likelihood function seen in Figure 6.3 is due to the specific x and 
the particular relationship among the αj, δj, and χj. If χj = 0 for both items (i.e., the 
1PL and 2PL models), then the likelihood function has a unique solution. Therefore, 
one possibility of addressing these multimodal likelihood function situations is to use 
the truncated 2PL model (Samejima, 2001) for person parameter estimation. The trun-
cated 2PL model capitalizes on the fact that the 2PL model’s IRF (with appropriate item 
parameter values) is virtually indistinguishable from that of the 3PL model above a 
critical value, θg. Below θg the probability of a response of 1 is 0 for the truncated 2PL 
model (i.e., the IRF is truncated at θg). Therefore, for the truncated 2PL model there are 
two conditions: (1) for –∞ < θ < θg where we have that pj = 0; and (2) for θg < θ < ∞; pj 
is given by the 2PL model (Equation 5.1). Samejima (1973a) shows that θg = 0.5 ln(χj) 
+ δj. An alternative approach for handling multimodal likelihood functions is to use a 
Bayesian person estimation technique (e.g., EAP).

FIGURE 6.3. Likelihood function for a two-item instrument with no unique maximum in 
which the first response is correct and the second is incorrect (i.e., xʹ = 10).
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How Large a Calibration Sample?

The answer to the question of how large a sample is needed depends, in part, on the 
estimation procedure, instrument characteristics (e.g., the distribution of item param-
eter estimates, instrument length, etc.), response data characteristics (e.g., amount of 
missing data), and person distribution. In general, attempts at answering this question 
have involved conducting simulation studies where the parameter estimates can be com-
pared, directly or indirectly, with the corresponding parameters.

For example, Yen (1987) investigated the parameter recovery of MMLE and JMLE 
as implemented in BILOG and LOGIST, respectively, using a fixed sample size of 
1,000. In this Monte Carlo study, she investigated three different instrument lengths 
(10, 20, and 40 items) and different θ distributions: normal (0, 1), negatively skewed 
(skew = –0.4/kurtosis = –0.1), positively skewed (skew = 0.4/kurtosis = –0.1), and 
platykurtic (skew = 0.1/kurtosis = –0.4). Generally speaking, she found that MMLE esti-
mates were more accurate than those of JMLE, particularly at the 10-item instrument 
length. With respect to MMLE, the item discrimination estimation results using the 
20- and 40-item instruments were comparable to one another in terms of their RMSD, 
with values ranging from 0.09 to 0.20. Moreover, the correlations between  �α and α  
( ˆrαα ) ranged from 0.88 to 0.94, regardless of the normality or non-normality of the θ 
distribution. For the 10-item length, the RMSD doubled to 0.48 and ˆrαα  decreased to 
0.84. In terms of estimating item locations, the 20- and 40-item instruments had cor-
relations ( ˆrδδ

) from 0.97 to 0.99 with RMSDs of 0.07 to 0.16; the 10-item length had an 

ˆrδδ  of 1.00 and RMSDs of 0.18. In general, item location is better estimated than item 
discrimination. The lower asymptote showed ˆrχχ s between 0.11 and 0.54, with RMSDs 
of 0.03 to 0.08 across the various instrument lengths and irrespective of the nature of 
the θ distribution. Although not a formal parameter recovery study, Mislevy (1986a) 
presents results indicating that BILOG does a reasonably good job in recovering item 
parameters with a sample size of 1,000 and a 20-item instrument.

This research appears to indicate that for MMLE a sample of 1,000 persons may 
lead to reasonably accurate item parameter estimates with the 3PL model under favor-
able conditions (e.g., a symmetric θ distribution, an instrument length of 20 items). 
This rough guideline assumes the use of prior distributions for χj and αj. However, it is 
strongly recommended that calibration sample sizes exceed 1,000 to mitigate the con-
vergence problems that sometimes plague 3PL model calibrations. In fact, Thissen and 
Wainer (1982) suggest trying to avoid estimating χj if possible under unrestricted MLE, 
and they also suggest that the use of a prior distribution when estimating  χj seems “to 
offer some hope” (p. 410). In cases where one has a smallish sample size and/or one 
experiences difficulty in estimating the item parameters with the 3PL model, then fix-
ing the lower asymptote to a reasonable nonzero value for some or all the items may 
help. In addition, some convergence problems (e.g., –2lnL values that oscillate across 
iterations) may sometimes be rectified by using the RIDGE subcommand available in 
BILOG and PARSCALE. The calibration sample size caveats and considerations previ-
ously mentioned in Chapters 3 and 5, such as model–data misfit tolerance, ancillary 
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technique sample size requirements, the amount of missing data, and so on are also 
applicable to the three-parameter model.6

Assessing Conditional Independence

In Chapter 2, we stated that one assumption underlying IRT models is that the responses 
to one item are not related to those on any other item conditional on θ(s). This assump-
tion is the conditional (or local) independence assumption. When this assumption is 
violated, then the accuracy of our item parameter estimates is affected and the total 
instrument information is overestimated (Chen & Thissen, 1997; Oshima, 1994; Sireci, 
Wainer, & Thissen, 1991; Thissen, Steinberg, & Mooney, 1989; Yen, 1993). As such, 
any subsequent use of the item parameter estimates for, say, equating (see Chapter 11) 
will be potentially adversely affected. In the following, we discuss some causes of item 
dependence, some ways to handle this dependence, and then a statistic for identifying 
local dependent items post administration.

Violation of the conditional independence assumption may occur for various rea-
sons, such as structural dependence among items, content clues, instrument length, 
insufficient allotted time to complete an instrument (i.e., speededness), and/or an insuf-
ficient number of latent variables in the IRT model. Examples of items with structural 
dependence are a set of survey questions that all refer to the same, say, life-changing 
event (e.g., a diagnosis of cancer, contracting HIV), comprehension questions that use 
the same reading passage, or trigonometry problems based on a common figure. In all 
of these cases, one may see local dependence. In addition, when there is insufficient 
time to respond to all the items on an instrument, the items affected by the lack of time 
may exhibit dependence. As a consequence, their corresponding parameter estimates 
are adversely affected. Conversely, when there is sufficient time to respond to an instru-
ment but the instrument is very long, one may observe local dependence due to fatigue 
or diminished motivation. Practice effects may also lead to local dependence.

For some of these causes, it is possible to identify the items that may be prone 
to local dependence prior to administering the instrument. In general, an instrument 
should be inspected for connections between the items. This inspection involves look-
ing for similarity in the questions’ text, an item providing one or more cues as to how 
to respond to another item, the items sharing grammatical inconsistencies or common 
information (e.g., a passage or a figure), the items sharing a nesting/hierarchical rela-
tionship, and so on. Depending on the outcome of this inspection, rewriting the items 
may be sufficient to address the anticipated dependency. In other cases, the items can-
not be rewritten because they need to be logically related or structurally dependent. In 
these cases the dependent items may be combined to form an item cluster.

An item cluster (also known as an item bundle or testlet [Thissen, Steinberg, & 
Mooney, 1989b; Wainer & Kiely, 1987; Wainer & Lewis, 1990]) is a group of interde-
pendent items that may be created pre- or post administration. There are at least two 
ways to score an item cluster. In one approach, each item in the item cluster provides 
an item score and the score on the item cluster is, for example, the sum of these item 
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scores. For instance, if an item cluster consists of three 1-point items, then the possible 
scores on the item cluster would be 0, 1, 2, or 3. In effect, the item cluster is treated as 
a single “item” for estimating a person’s location. One way of utilizing this item cluster 
score is to use a model that can handle both dichotomous and polytomous responses 
(e.g., see Yen, 1993). Models that can address not only polytomous responses, but also 
dichotomous responses, are presented in the following chapters.

In the foregoing polytomous model approach to handling item clusters, there is 
some loss of information. For example, an item cluster score does not say anything 
about the response pattern that produced the score. Whether this is an important issue 
is context-specific. However, if the loss of this information is important, then an alterna-
tive approach to scoring an item cluster is to use a model that incorporates a parameter 
that reflects the dependency among items within the item cluster. Bradlow, Wainer, and 
Wang (1999) developed such a model by augmenting the 2PL model. The augmentation 
is a random effect parameter that reflects a person-specific testlet effect.7 The Bradlow et 
al. model may be applied to both items that are independent and those in testlets; one- 
and three-parameter models also exist (see Wang & Wilson, 2005; Wainer, Bradlow, & 
Du, 2000). This testlet model and its variants form the basis of testlet response theory 
(Wainer, Bradlow, & Wang, 2007).

Various indices have been developed for identifying local dependence. A review of 
some of these indices and an examination of which index works best may be found in 
Kim, de Ayala, Ferdous, and Nering (2011); also see Glas (1999), Glas and Falcón (2003), 
Orlando and Thissen (2000), and Rosenbaum (1984) for related indices. One of these 
indices is Yen’s (1984) Q3 index. Although no index may be considered to be the best in 
terms of combining high power to detect conditional item dependence with low false 
positive rates, the Q3 index works reasonably well (e.g., see Kim et al., 2011). Because of  
Q3’s simplicity and its comparative good performance, we use it to demonstrate evaluat-
ing the conditional independence assumption with our mathematics data example.

Q3 is the correlation between the residuals for a pair of items. The residual for an 
item is the difference between an individual’s observed response and their expected item 
response. Therefore, after fitting the model, the Pearson correlation coefficient is used 
to examine the linear relationship between pairs of residuals. In the current context, 
the observed response is either a 1 or a 0 and the expected response is the probability 
according to the 3PL model. Symbolically, the residual for person i on item j is

 ˆ( )ij ij j id x p θ= −  

and for item k it is

 ˆ( )ik ik k id x p θ= − . 

Q3 is the correlation between dij and dik across respondents

 3( , ) j kj k d dQ r=  (6.4)

If |Q3 | equals 1.0, then the two items are perfectly interdependent. In contrast, a Q3 
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of 0.0 is a necessary, but not sufficient, condition for independence because a Q3 = 0 can 
be obtained when the items in the pair are independent of one another or because they 
exhibit a nonlinear relationship. Therefore, Q3 is useful for identifying items that exhibit 
item dependence. Under conditional independence Q3 should have an expected value of 

1
(L 1)

−
−  (Yen, 1993).

As has been mentioned, in some cases one can explain item dependence in terms 
of multidimensionality. That is, the dependency between two items is due to a common 
additional latent variable such as test-wiseness. If two items are independent, then their 
interrelationship is completely explained by the latent structure of the model. If one 
applies a unidimensional model when two dimensions are called for, then the items that 
are influenced by both latent variables show a negative local dependence, and items that 
are affected by only one of the two latent variables show a positive local dependence 
(Yen, 1984). However, if only one of the latent variables is used, then the items that are 
influenced only by that underlying variable show a slight negative local dependence. To 
obtain a large Q3 value for an item pair, we need to have similarity of parameters for the 
items in question and the items need to share one or more unique dimensions. There-
fore, similarity of parameters is a necessary, but not sufficient, condition for obtaining 
a large Q3 value.

Some research (e.g., Yen, 1984) has found that although the value of Q3 is not as 
much influenced by the sample size as other measures, it is affected by the instrument’s 
length. This may be due to item scores being involved in both xij and xik as well as 
(implicitly) in pj( �θ). As a result, Q3 may tend to be slightly negative due to part–whole 
contamination (Yen, 1984). The implication is that one would expect to see substantially 
more negative Q3s for short instruments than for longer instruments. In this case, these 
negative values may be artifacts due to the instrument’s length.

There are various ways to use Q3 to identify locally dependent items. First, we can 
use Q3 in a statistical z-test (Yen, 1984). This would require that Q3 be transformed by 
the Fisher r-to-z  ̇ transformation (z  ̇ Q3

) and then used in a z-test,

 

3

1 (N 3)
=

−
Qz

z
 

z  ̇ Q3
 has a mean of 0.0 and a variance of 1/(N – 3). The standard unit normal table is used 

to provide critical values for identifying items with z  ̇ Q3
 values that are unlikely to be 

observed owing to chance alone. However, because the typical calibration sample size 
will result in a test with a great deal of power, we will most likely reject the null hypoth-
esis of independence for trivially small correlations. An additional issue is that the sam-
pling distribution of Q3 may not be symmetric (Chen & Thissen, 1997). That is, because 
the Q3 sampling distribution may not approximate the standard normal very well, the 
critical values would be inappropriate. As a result, the Q3 empirical Type I error rates 
do not match the nominal significance level that one would expect under normal curve 
theory. Moreover, Marais (2013) states that the “sampling properties of the correlations 
among residuals are unknown. It is therefore not possible to use these statistics for for-
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mal tests of local independence” (p. 121). Therefore, rather than using the critical values 
from the standard unit normal table in a statistical inferential fashion, it is preferable to 
use them as guidelines/screening values for informed judgment.

A second way of using Q3 is to take advantage of the fact that Q3 is a correlation. 
Specifically, because Q3 is a correlation coefficient, the square of Q3 (Q 2

3 ) may be inter-
preted as a measure of the amount of residual variance shared by an item pair. There-
fore, item pairs with a large proportion (e.g., 5% or greater) of shared variability would 
indicate dependent items.

Alternatively, one could compare Q3 to a cutpoint. That is, an observed Q3 that is 
larger than the cutpoint would indicate item dependence. Yen (1993) suggests one such 
cutpoint in the context of instruments with a minimum of 17 items. Specifically, a Q3 
screening value of 0.2 was suggested to identify items exhibiting dependence (i.e., |Q3| > 
0.2 indicates local item dependence). Although this cutpoint has been found to produce 
small Type I error rates, it also leads to comparatively lower power than other detection 
methods (Chen & Thissen, 1997).

To address some of these issues, Christensen, Makransky, and Horton (2017) con-
ducted a study to arrive at empirically based critical values. Using simulation in con-
junction with empirical estimates, they found, for example, that critical values of 0.19 
and 0.24 cut off 5% and 1%, respectively, of max(Q3(j,k))’s empirical distribution above 
them with a 9-item instrument; max(Q3(j,k)) is the largest observed Q3(j,k). Although the 
study focused on the Rasch model, their results may be considered indicative that no 
single critical value can be used in all situations regardless of the IRT model used. They 
concur with Marais’s (2013) conclusion that Q3’s evaluation should take into account all 
of an instrument’s Q3s (cf. Marais, 2013, p. 121). Specifically, a given Q3(j,k) is compared 
to “max(Q3(j,k)) – Q�  3”, where Christensen et al. (2017) define the average Q3 as 

 
3Q  = 

32
jk

j k
Q

>
∑ / (L(L 1))− . 

As Equation 6.4 shows, Q3 is the zero-order correlation for item j’s and k’s respec-
tive residuals. (In this paragraph, all references to items are to the items’ residuals.) As 
such, unless all item pairs are independent of one another, the correlation between item 
j and k will contain information from the other items to varying degrees. For example, 
assume that we have a three-item instrument and the correlation between items 1 and 
2 is –0.181. If the correlation between items 1 and 3 is zero and the correlation between 
items 2 and 3 is also zero, then the correlation between items 1 and 2 is the zero-order 
correlation (e.g., Q3 = rd1d2

 = –0.181). However, if the correlation between items 1 and 3 
is –0.098 and if the correlation between items 2 and 3 is –0.304, then our zero-order cor-
relation’s magnitude is affected by the linear relationships item 3 has with items 1 and 2. 
To obtain an accurate assessment of the linear relationship between items 1 and 2, we 
should remove the linear influences of item 3 on items 1 and 2. Thus, we introduce a 
modified Q3 statistic in which we calculate the (L – 2)-order partial correlation for items 
j and k

 
3 .j k

P
d dQ r= z

, (6.5)
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where z represents all the instrument’s items except items j and k. For our example, the 
first-order partial correlation between items 1 and 2 removing the linear effects of item 
3 is Q 3

P  = –0.222. Comparing Q 3
P  and Q3 shows item 3’s linear effect on Q3. In short, in 

this case Q3 shows less item dependency between items 1 and 2 than does Q 3
P . As is the 

case with Q3, large values of Q 3
P  reflect item dependence, with values around 0 indicat-

ing either no linear relationship between items j and k or item independence.

Example: Application of the 3PL Model  
to the Mathematics Data, MMLE, BILOG-MG

 A number of programs perform 3PL model calibration, including, but not limited to, 
BILOG-MG, XCALIBRE, mirt, NOHARM, SAS proc irt, and TAM. For comparison 
with our previous calibrations we use BILOG and then mirt.

Table 6.1 shows the command file for performing the calibration. As can be seen, we 
estimate both item and person parameters in a single run and save both the item estimates 
(PARm = ‘MATH3PL.PAR’) and person location estimates (SCOre = ‘MATH3PL _
EAP.SCO’) using the SAVE subcommand on the GLOBAL command line and the SAVE 
command.

Table 6.2 contains the corresponding abridged Phases 1 and 2 output. The echo of 
the program parameters indicates that the intended model (3 PARAMETER LOGIS-
TIC) and the logistic metric (LOGIT METRIC) are being used. The echo of the Phase 2 
program parameters shows the maxima of 50 EM and 20 Newton cycles (CALIB line) as 
well as the default convergence criterion of 0.01. Moreover, the output indicates the use 
of prior distributions for the estimation of αj and χj (i.e., CONSTRAINT DISTRIBUTION 
ON SLOPES and CONSTRAINT DISTRIBUTION ON ASYMPTOTES, respectively).

The Phase 2 results show convergence in 14 EM cycles, and 3 Newton cycles were 
executed. The item parameter estimates from the converged solution are presented in 
Table 6.3. The item discrimination, location parameter, and pseudo-guessing param-
eter estimates are obtained from the SLOPE, THRESHOLD, and ASYMPTOTE columns, 

TABLE 6.1. BILOG Command File for the 3PL Model Item Calibration

Example 3PL Calibration w/ person scoring

>GLOBAL DFName = 'C: \Math.dat', NPArm = 3, LOGistic, SAVe;
>SAVE PARm = 'MATH3PL.PAR', SCOre = 'MATH3PL_EAP.SCO';
>LENGTH NITems = (5);
>INPUT NTOtal = 5, NIDchar = 10;
>ITEMS ;
>TEST1 TNAme = 'TEST0001', INUmber = (1(1)5);
(10A1, T1, 5(1X,A1))
>CALIB CYCLES=50, NEWtON=20, PLOt = 1.0000, ACCel = 1.0000, 
       CHIsquare = (5, 8);
>SCORE ;
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TABLE 6.2. BILOG Output: Phases 1 and 2 (Abridged)

<Phase 1 results>
  :
 >GLOBAL DFNAME='MATHPAT.DAT', NPARM=3, NWGHT=3, LOG, SAVE;

 FILE ASSIGNMENT AND DISPOSITION
 ===============================
 SUBJECT DATA INPUT FILE     C:\MATH.DAT
 BILOG-MG MASTER DATA FILE   MF.DAT
                                            WILL BE CREATED FROM DATA FILE

 CALIBRATION DATA FILE       CF.DAT
                                            WILL BE CREATED FROM DATA FILE

 ITEM PARAMETERS FILE        IF.DAT
                                            WILL BE CREATED THIS RUN

 CASE SCALE-SCORE FILE       SF.DAT
 CASE WEIGHTING                             NONE EMPLOYED

 ITEM RESPONSE MODEL                        3 PARAMETER LOGISTIC
                                            LOGIT  METRIC (I.E., D = 1.0)  :
     19601 OBSERVATIONS READ FROM FILE:   C:\MATH.DAT
     19601 OBSERVATIONS WRITTEN TO FILE:  MF.DAT

 ITEM STATISTICS FOR SUBTEST TEST0001

                                                      ITEM*TEST CORRELATION
 ITEM   NAME        #TRIED    #RIGHT   PCT      LOGIT    PEARSON  BISERIAL
 -------------------------------------------------------------------------
    1   ITEM0001  19601.0   17395.0    88.7    -2.07     0.246    0.407
    2   ITEM0002  19601.0   12624.0    64.4    -0.59     0.439    0.564
    3   ITEM0003  19601.0   11094.0    56.6    -0.27     0.416    0.524
    4   ITEM0004  19601.0    8369.0    42.7     0.29     0.405    0.511
    5   ITEM0005  19601.0    7592.0    38.7     0.46     0.312    0.397
 -------------------------------------------------------------------------

<Phase 2 results begin>
  :
CALIBRATION PARAMETERS
 ======================
MAXIMUM NUMBER OF EM CYCLES:                 50
MAXIMUM NUMBER OF NEWTON CYCLES:             20
 CONVERGENCE CRITERION:                       0.0100
 ACCELERATION CONSTANT:                       1.0000
LATENT DISTRIBUTION:                       NORMAL PRIOR FOR EACH GROUP
 PLOT EMPIRICAL VS.  FITTED ICC'S:           YES, FOR ITEMS WITH FIT PROBABILITY
                                            LESS THAN 1.00000
 DATA HANDLING:                             DATA ON SCRATCH FILE
 CONSTRAINT DISTRIBUTION ON ASYMPTOTES:     YES
 CONSTRAINT DISTRIBUTION ON SLOPES:         YES
 CONSTRAINT DISTRIBUTION ON THRESHOLDS:     NO
 SOURCE OF ITEM CONSTRAINT DISTIBUTION
       MEANS AND STANDARD DEVIATIONS:       PROGRAM DEFAULTS  :
  :
METHOD OF SOLUTION:

 EM CYCLES (MAXIMUM OF    50)
 FOLLOWED BY NEWTON-RAPHSON STEPS (MAXIMUM OF  20)
  :

(continued)
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respectively. For instance, for item 1 the item discrimination estimate ( �α1) is 1.608, and 
the item location estimate (  �δ1) is –1.561, with a pseudo-guessing parameter estimate 
(  �χ1) of 0.228. By and large, the   �χ js are acceptable.8

As part of our model–data fit analysis, we compare the empirical and predicted 
IRFs for each of our items. Figure 6.4 shows item 4’s empirical and predicted IRFs. The 
estimate of the item’s pseudo-guessing parameter is identified by the symbol c instead of  

TABLE 6.2. (continued)

 [EM STEP]

-2 LOG LIKELIHOOD =     111772.062
CYCLE      1;   LARGEST CHANGE=   0.35458  :
          -2 LOG LIKELIHOOD =    110088.005

-2 LOG LIKELIHOOD =     110066.473
CYCLE     14;   LARGEST CHANGE=   0.00782

 [FULL NEWTON CYCLES]
-2 LOG LIKELIHOOD:       110065.8456
CYCLE    15;   LARGEST CHANGE=   0.10845
  :

-2 LOG LIKELIHOOD:       110066.0225
CYCLE    17;   LARGEST CHANGE=   0.00327
  :

TABLE 6.3. BILOG Output: Phase 2 (Abridged)

  :
ITEM      INTERCEPT    SLOPE    THRESHOLD   LOADING   ASYMPTOTE    CHISQ     DF
              S.E.       S.E.       S.E.       S.E.       S.E.      (PROB)
 -------------------------------------------------------------------------------
 ITEM0001 |   2.510  |   1.608  |  -1.561  |   0.849  |   0.228  |   693.1   4.0
          |   0.160* |   0.092* |   0.154* |   0.049* |   0.096* | (0.0000)
          |          |          |          |          |          |
 ITEM0002 |   0.661  |   2.802  |  -0.236  |   0.942  |   0.156  |   826.5   3.0
          |   0.100* |   0.217* |   0.050* |   0.073* |   0.029* | (0.0000)
          |          |          |          |          |          |
 ITEM0003 |  -0.328  |   2.397  |   0.137  |   0.923  |   0.202  |   665.4   4.0
          |   0.121* |   0.183* |   0.041* |   0.071* |   0.020* | (0.0000)
          |          |          |          |          |          |
 ITEM0004 |  -1.482  |   2.788  |   0.532  |   0.941  |   0.147  |   495.5   5.0
          |   0.177* |   0.254* |   0.022* |   0.086* |   0.011* | (0.0000)
          |          |          |          |          |          |
 ITEM0005 |  -1.420  |   1.608  |   0.883  |   0.849  |   0.156  |   611.5   5.0
          |   0.153* |   0.134* |   0.033* |   0.071* |   0.016* | (0.0000)
 -------------------------------------------------------------------------------
                                                            * STANDARD ERROR

     LARGEST CHANGE =    0.003266                         3291.9  21.0
                                                          (0.0000) 
  :
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χ and the item’s location by b. As can be seen, there is a close correspondence between 
the empirical and predicted IRFs. This correspondence provides evidence of data fit for 
this item. Figure 6.4 is typical of the other empirical versus predicted IRFs plots. Item 
4’s IRF and information function are presented in the left and right panels, respectively, 
of Figure 6.5. From the right panel we see that the item’s information function is not 
quite centered about the item’s location. This is true for all items calibrated with the 3PL 
model and is due to the influence of a nonzero lower asymptote. The actual location of 
the maximum of the item information is discussed below.

Fit Assessment: Conditional Independence Assessment

We use Q 3
P  for evaluating the conditional independence assumption; Appendix G “Con-

ditional Independence Using Q3” shows the analysis using Q3 and a simulation approach 
for identifying a screening value. With a five-item instrument, there are 10 Q 3

P  values 
to calculate (i.e., L(L – 1)/2). To calculate Q 3

P  we need to have person location estimates 
to calculate the expected responses, pjs. Our (EAP) estimates are obtained from the 
MATH3PL _ EAP.SCO file that we created in our calibration. These   �θs, the response 
data, and the item parameter estimates are used to calculate the pjs as well as the residu-
als (xij – pj(  �θi)). Using the residuals, we calculate the 10 third-order partial correlations 
(i.e., Q 3

P ). Table 6.4 shows the Q 3
P s for the mathematics data example; the scatterplots 

FIGURE 6.4. Empirical and predicted IRFs for item 4.
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(not presented) corresponding to these values were inspected for anomalies, but none 
were found.

Figure 6.6 contains a dot density plot of our Q 3
P s with the location of the mean  

Q 3
P  (Q�3

P  = –0.29789). To obtain Q�3
P  we use the Fisher r to z  ̇ transformation to convert 

each correlation to z  ̇ and then calculate the average z  ̇ . This average z  ̇ is transformed back 
to correlation. That is,

 
3
PQ  = 

L-1 L

3( , ) L
1

tanh( arctanh( ) / )P
j k r

j k j
Q C

= +
∑ ∑ , (6.6)

where LCr = (L(L 1))
2

− .
To identify values that reflect item dependence, we use a “gap” approach informed 

by  Q�3
P  in which an item pair that is substantially separated from the item pair cluster 

FIGURE 6.5. Item response and item information functions for item 4.

TABLE 6.4. 3
PQ  Statistics for the Math Data Set; 

2
3( )PQ  Are in Parentheses

Items
1 2 3 4

2 -0.30300
(0.09181)

3 -0.24700 -0.44300
(0.06101) (0.19625)

4 -0.23100 -0.38500 -0.37000
(0.05336) (0.14823) (0.13690)

5 -0.16900 -0.28100 -0.25100 -0.27800
(0.02856) (0.07896) (0.06300) (0.07728)
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reflects a potentially item dependent pair. For instance, we see that we have a cluster of 
values in the –0.30 to –0.22 range that contains Q�3

P . These item pairs around the mean 
Q 3

P  do not show item dependence. However, below this range there is a gap (~0.15) to 
get to the lowest value Q 3

P  of –0.443. This item pair (items 2 and 3) has almost 20% 
of their variability in common (Table 6.4). Conversely, above this range we have a gap 
(~0.07) to reach our rightmost point Q 3

P  = –0.169 for item pair 1–5. However, this item 
pair has only about 3% of shared variability. As such, we do not consider this item 
pair to be exhibiting item dependence. Additionally, one might consider the two values,  
Q 3

P  = –0.37 and Q 3
P  = –0.385 for item pairs 3–4 and 2–4, respectively, with a gap of 

approximately 0.075 from the cluster’s lowest value as potentially exhibiting depen-
dence. These two pairs, items 3–4 and items 2–4, have 13.7% and 14.8%, respectively, 
of their variance in common. Although these three item pairs may be considered to be 
exhibiting item dependence, evidence of conditional dependence in the remaining seven 
pairs is absent. Our analysis shows that after fitting the unidimensional 3PL model to 
the data, the items in these three item pairs (i.e., items 2, 3, 4) had more than 13% of 
their residual variability in common.9 (These item pairs may or may not be found to be 
exhibiting item dependence with either the 1PL or 2PL models.)

How one deals with items that are considered sufficiently dependent to be problem-
atic post administration is contingent on what one believes is the cause of the depen-
dency. Again, inspection of the items exhibiting local dependence may be useful (the 
local dependence may be related to the locations of the items in the instrument, their 
text, dimensionality, and so on). In some cases where there is a great deal of dependence, 
it may be necessary to remove one of the dependent items for pragmatic reasons and 
because it is not clear as to why there is a dependency between the items. Because highly 
dependent items are in a sense redundant, the removal of one of the dependent items 
may not be problematic. In other cases, the items may be combined to form a testlet or 
the items combined to form an item parcel that is scored polytomously. In either case the 
instrument would need to be recalibrated.

For our example, the local dependence exhibited by the two item pairs could be 
addressed by forming a parcel for each pair. Parcel 1 would consist of items 1 and 4, 
whereas parcel 2 would involve items 2 and 5. Each parcel would have possible scores of 
0 through 2, and the instrument would consist of three “items” (i.e., parcel 1, parcel 2, 

FIGURE 6.6. Dot density plot for Q
3
P .
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and item 3). The corresponding response data could be calibrated using, for example, 
the polytomous partial credit model discussed in Chapter 7.

Fit Assessment: Model Comparison

In this and in previous chapters, our focus has been on whether a particular model is 
exhibiting model–data fit. We now present three model–data fit statistics that can be 
used for making model comparisons and selection. These complementary procedures 
should be used after obtaining evidence supporting model–data fit. The first of these is 
based on the likelihood ratio (G2) test statistic for comparing the relative fit of hierarchi-
cally related models. The second statistic is analogous to the use of R2 for comparing 
various regression models, whereas the third is based on an information criterion.

The change in G2 across models can be used to determine whether two hierarchi-
cally related models significantly differ from one another. For instance, the 2PL model 
can be considered to be nested within the 3PL model because constraining the 3PL 
model’s χjs to be 0 yields the 2PL model. Similarly, imposing the constraint that all items 
have the same discrimination parameter on the 2PL model produces the 1PL model. 
If we impose the constraints that all the items have a common item discrimination 
parameter and χjs equals 0, then the 3PL model reduces to the 1PL model. As such, the 
1PL model is nested within both the 2PL and 3PL models. In the following discussion, 
we refer to the more complex (or less constrained) model as the full model and the less 
complex/simpler (or more constrained) model as the reduced model. The likelihood ratio 
test is the difference between two deviance statistics

 2 2 2( 2 ln ) ( 2 ln )R F R FG L L G G∆ = − − − = − , (6.7)

where LR is the maximum of the likelihood for the reduced model and LF is the maxi-
mum of the likelihood for the full model. The degrees of freedom (df) for evaluating the 
significance of ΔG2 is the difference in the number of parameters between the full model 
and the reduced model.10 This statistic is distributed as a χ2 when the sample size is 
large and the full (nesting) model holds for the data. A nonsignificant statistic indicates 
that the additional complexity of the nesting model is not necessary. For instance, if a 
comparison of the 2PL model with the 3PL model is not significant, then the additional 
estimation of the pseudo-guessing parameters (i.e., the increased model complexity) 
is not necessary to improve model–data fit over and above that obtained with the 2PL 
model.

Table 6.5 contains the values of the –2 log likelihoods (i.e., –2lnL) for the 1PL, 2PL, 
and 3PL models from our BILOG calibrations. The –2lnL is the last entry from the con-
verged solution’s iteration history and is labeled –2 LOG LIKELIHOOD: in the output. 
As can be seen, as the models increase in complexity, the corresponding G2s decrease. 
The difference between the 1PL and 2PL models is

 2G∆  = ( 2 ln ) ( 2 ln )R FL L− − −  = 110,774.295 – 110,397.103 = 377.191 
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with 4 df. Therefore, at the instrument level the 2PL model represents a significant (at 
the 5% level) improvement in fit over the 1PL model. An analogous comparison between 
the 2PL and 3PL models also shows a significant improvement in fit by the 3PL model 
over the 2PL model. Therefore, the 3PL model fits significantly better than either the 
2PL or 1PL model.

Our second model comparison statistic is complementary to ΔG2. This approach 
uses G2 in a manner analogous to comparing various regression models’ R2s. That is, the 
change in R2s may be used for assessing the relative improvement in the proportion of 
variability accounted for by one model over another model. In the current context, our 
strategy is to calculate the relative reduction in G2s (Haberman, 1978). For instance, for 
the comparison of the 2PL model (G 2

F ) with the 1PL model (G 2
R ) we would calculate

 
2 2

2
2

R F

R

G GR
G∆
−=  = 

110774.295 110397.103
110774.295

−
 = 0.0034 

This R 2R∆  indicates that the 2PL model results in a 0.34% improvement in fit over the 
1PL model. Comparing the 3PL and 2PL models we have

 2R∆  = 
110397.103 110066.023

110397.103
−

 = 0.0030 

Therefore, using the more complex 3PL model results in an improvement of fit of 0.3% 
over the 2PL model. We do not consider this to be a meaningful improvement in fit vis-
à-vis the increase in model complexity. Summarizing the results so far, we have that the 
3PL model fits significantly better than the 2PL and 1PL models, but it does not result in 
a meaningful improvement of fit of over either model.

Table 6.5 shows the AIC and BIC values for the three models. As is the case with 
ΔG2 above, we see that even taking the 3PL model’s additional complexity into account 
(i.e., relative to the 1PL and 2PL models), these statistics indicate that it is the best fitting 
of these three models.

Although our triangulation with ΔG2, AIC, and BIC shows that the 3PL model is the 
best-fitting model of the three considered, our R 2R∆  shows that the differences are slight. 
In fact, the correlation between the 1PL model-based   �θs and those of the 2PL model is 
0.9908, and for the   �θs from the 2PL and 3PL models the correlation is 0.9869; the lowest 

TABLE 6.5. Model Fit Statistics

Model -2lnL df
Relative 
Change

Number of 
Parameters AIC BIC

1PLa 110,774.295 25  6 110,786.295 110,833.595

2PL 110,397.103 21 0.0034 10 110,417.103 110,495.937

3PL 110,066.023 16 0.0030 15 110,096.023 110,214.273

afive item locations plus a common a.
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correlation is between the 1PL and 3PL models’   �θs, r = 0.9778. That is, although the 3PL 
model is the best fitting of the three models, we have a high degree of linear agreement 
in the ordering of individuals across the three models. Based solely on the R 2R∆ , the mag-
nitude of the   �θ intercorrelations, the variability in the   �αs (both this chapter and Chap-
ter 5), and the axiom “Make everything as simple as possible, but not simpler” (Albert 
Einstein), we would select the 2PL model for modeling these data. (However, we believe 
that a reasonable argument can be made for selecting the 1PL model.) Additional points 
to consider in model selection are presented below in the section “Issues to Consider in 
Selecting among the 1PL, 2PL, and 3PL Models.”

Example: Application of the 3PL Model  
to the Mathematics Data, MMLE, mirt

As in Chapter 5, we assume the data and the relevant libraries are loaded into our R work-
space. To perform our calibration, we specify the 3PL model in our call to the mirt func-
tion (ThreePL = mirt(mathdata,1, ‘3PL’, SE = T, SE.type = ‘Fisher’)). 
Our calibration required 58 iterations to obtain convergence (Table 6.6).

Examining our item parameter estimates, we notice that our first item has a 
large   �χ1 of 0.609 and a comparatively good discrimination ( �α1 = 2.289); the item is 
located at   �δ1 = –0.703. The large   �χ1 coupled with good discrimination is somewhat 
counterintuitive. Our traditional item statistics corroborate the item’s easiness, with 
almost 89% of the respondents providing a correct response (P-value = 0.8875); this 
item did not do as well as the other items in differentiating among observed scores (cor-
rected r1,NC = 0.246). Our observed score frequency distribution shows that only 3.5% 
of our sample have a X = 0, and our empirical IRFs for item 1 (Figure 6.7) show there 
is little observed data below approximately –1. In toto, we conjecture that there is not 
enough information at the lower end of the continuum to “properly” estimate item 1’s 
lower asymptote.

As Figure 6.7 shows, the leftmost empirical point (θ ≅ –1.12) has a proportion cor-
rect of about 0.33 that is not quite being captured by the IRF. With 6 fractiles we see a 
smoother empirical pattern that appears to indicate that the IRF should continue further 
down to reflect the leftmost empirical point. Because we are modeling the data, we decide 
to impose priors on our   �χs to enhance the correspondence between our   �χs and our 
data. This two-step process begins with determining the item parameter number for the 
parameter of interest and then specifying the prior using the item parameter number. To 
determine the item parameter number, we execute mirt using the pars = ‘values’ 
argument. The corresponding output object (modThreePL) is shown in Table 6.7, with 
the leftmost column containing the item parameter numbers and the column labeled 
item and name specifying the item and corresponding parameter label, respectively. 
For instance, item 1’s information is on the first four lines, with item parameter number 
1 being used for α1 (labeled a1), number 2 for δ1 (labeled d), number 3 for χ1 (labeled 
g), and number 4 for ϒ1 (labeled u), respectively. We can identify the item parameter 
numbers for χ1, χ2, χ3, χ4, and χ5 from the appropriate line in the modThreePL display. 
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TABLE 6.6. mirt Session for the 3PL Calibration of the Mathematics Data 
(No Prior)

> # read data, load mirt, etc.
    
    > print((ThreePL = mirt(mathdata,1,'3PL',SE=T,SE.type='Fisher')))
    Iteration: 58, Log-Lik: -55028.684, Max-Change: 0.00008
    
    Calculating information matrix...
    
    Call:
    mirt(data = mathdata, model = 1, itemtype = "3PL", SE = T, SE.type = "Fisher")
    
    Full-information item factor analysis with 1 factor(s).
    Converged within 1e-04 tolerance after 58 EM iterations.
    mirt version: 1.30
    M-step optimizer: BFGS
    EM acceleration: Ramsay
    Number of rectangular quadrature: 61
    Latent density type: Gaussian
    
    Information matrix estimated with method: Fisher
    Condition number of information matrix = 1897.529
    Second-order test: model is a possible local maximum
    
    Log-likelihood = -55028.68
    Estimated parameters: 15
    AIC = 110087.4; AICc = 110087.4
    BIC = 110205.6; SABIC = 110157.9
    G2 (16) = 55.71, p = 0
    RMSEA = 0.011, CFI = NaN, TLI = NaN

> coef(ThreePL,simplify=TRUE,IRTpars=TRUE)
    $items
           a      b     g u
    I1 2.289 -0.703 0.609 1
    I2 2.640 -0.306 0.108 1
    I3 2.523  0.154 0.212 1
    I4 2.736  0.519 0.143 1
    I5 1.618  0.867 0.154 1

> # get proportion correct
> summary(mathdata)
          I1               I2              I3              I4              I5
    Min.   :0.0000   Min.   :0.000   Min.   :0.000   Min.   :0.000   Min.   :0.0000
    1st Qu.:1.0000   1st Qu.:0.000   1st Qu.:0.000   1st Qu.:0.000   1st Qu.:0.0000
    Median :1.0000   Median :1.000   Median :1.000   Median :0.000   Median :0.0000
    Mean   :0.8875   Mean   :0.644   Mean   :0.566   Mean   :0.427   Mean   :0.3873
    3rd Qu.:1.0000   3rd Qu.:1.000   3rd Qu.:1.000   3rd Qu.:1.000   3rd Qu.:1.0000
    Max.   :1.0000   Max.   :1.000   Max.   :1.000   Max.   :1.000   Max.   :1.0000

> # obtain corrected item total correlations & item total correlations
> NC=c(rep(-1,19601))                                            # create & initialize NC

> for (i in 1:19601){NC[i]=sum(mathdata[i,])}                    # calculate NC

(continued)
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Alternatively, we can extract the parameter numbers by using a Boolean expression to 
select only the parameter numbers from the parnum variable when the variable name is 
set to g (with(modThreePL,parnum[name = = ‘g’])); we use the with function 
to minimize typing the output object name. The corresponding item parameter numbers 
for our χ1, χ2, χ3, χ4, and χ5 are 3, 7, 11, 15, and 19, respectively.

To impose the prior, we specify the type (‘prior.type’) and its parameters 
(‘prior _ 1’, ‘prior _ 2’). The prior has a location value of –1.5 and a scale value 
of 0.5. We use a generic for loop to implement the three assignments (‘prior.type’, 
‘prior _ 1’, ‘prior _ 2’) for each item. Our for loop executes for each of our 
items; the number of items is stored in the output object ThreePL in the  variable 
@Data$nitems (see Table 6.6 for the creation of ThreePL). The body of the loop 

TABLE 6.6. (continued)

> table(NC)                                                     # frequency distribution
    NC
       0    1    2    3    4    5
     691 3099 4269 4116 4041 3385

> # calculate corrected point biserial & point biserial for each item
> for (j in 1:5){
+ print(j)
+ print(cor((NC-mathdata[,j]),mathdata[,j])); print(cor(NC,mathdata[,j])) }
    [1] 1
    [1] 0.2460252
    [1] 0.4473804
    [1] 2
    [1] 0.4389591
    [1] 0.6882788
    [1] 3
    [1] 0.4156754
    [1] 0.6804917
    [1] 4
    [1] 0.4051335
    [1] 0.6727627
    [1] 5
    [1] 0.3117375
    [1] 0.6017258

> itemfit(ThreePL,S_X2.tables=T,empirical.table=1) # item 1
    $`theta = -1.1215`
          Observed  Expected z.Residual
    cat_0     1309  554.1609   32.06538
    cat_1      651 1405.8391  -20.13198
    
    $`theta = -0.936`
          Observed  Expected z.Residual
    cat_0      331  483.2472  -6.925715
    cat_1     1629 1476.7528   3.961826
    :

> itemfit(ThreePL,group.bins=10,empirical.plot=1,empirical.CI=0)  # produces figure 6.7
> itemfit(ThreePL,group.bins=6,empirical.plot=1,empirical.CI=0)   # produces figure 6.7
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contains three assignments, with the indexing of the item parameter done by using the 
variable itm. We initialize itm to our first item parameter number 3. Each iteration of 
the for loop increments itm by the difference between successive parameter numbers 
(i.e., 4).

In our call to mirt, we pass our modified modThreePL by using the pars argu-
ment (pars = modThreePL). Our calibration required fewer iterations (i.e., 37) than 
when we did not impose priors on the estimation of the   �χs (i.e., 58 iterations). In con-
trast to our previous estimates for item 1, we now have   �α1 = 1.683,   �δ1 = –1.542, and   �χ1 
of 0.221. Our new   �χ1 is closer to the data. Figure 6.8 shows the corresponding IRFs. 
Both figures show a better agreement with the data than is seen in Figure 6.7. Compar-
ing items 2–5’s   �χs with and without use of the prior shows a difference on the order of 
0.007 or less for items 3–5 and 0.058 for item 2. The items’ corresponding IRFs and item 
information are shown in Figure 6.9. The nonzero lower asymptotes are evident in the 
IRFs. Similarly, the varying discriminations is seen in both the slope of the IRFs and 
the heights of the item information functions. As in previous chapters, our mirt item 
parameter estimates show correlations of 0.991 or higher with those of BILOG.

Because our fit analysis at both the model and item levels proceeds as demonstrated 
in Chapter 5, we do not repeat it here. However, we note that according to the informa-
tion criteria (e.g., AIC, BIC), the 3PL model is found to fit better than the 2PL model 
(i.e., anova(TwoPL, ThreePL)). Moreover, we show how to examine conditional 
dependence using Q3 (residuals(ThreePL,type = “Q3”)); Q3 is one of the local 
dependency statistics provided by mirt. See Appendix G, “Conditional Independence 
Using Q3,” for more information on using Q3.

We examine item parameter invariance using multiple-group analysis. We begin 
by creating two random samples, along with a binary group indicator variable (grp), 
followed by concatenating the two samples to create our data frame mathdatagrp. 
(Because we use Chapter 5’s seed (set.seed(99999)), these samples are the same 
as those in Chapter 5.) To impose priors on the   �χs, we use the pars = ‘values’ 

FIGURE 6.7. IRF for item 1 with observed proportions (left: 10 fractiles; right: 6 fractiles).
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TABLE 6.7. mirt Session for the 3PL Calibration of the Mathematics Data 
(Prior)
> # This is a continuation of the session from Table 6.6

> # go get item parameter numbers (3, 7, 11, 15, 19)
> print((modThreePL = mirt(mathdata,1,'3PL',SE=T,SE.type='Fisher',pars='values')))
   group  item  class  name parnum      value lbound ubound   est prior.type prior_1
1    all    I1   dich    a1      1  0.8510000   -Inf    Inf  TRUE       none     NaN
2    all    I1   dich     d      2  2.3841111   -Inf    Inf  TRUE       none     NaN
3    all    I1   dich     g      3  0.1500000  0e+00      1  TRUE       none     NaN 
4    all    I1   dich     u      4  1.0000000  0e+00      1 FALSE       none     NaN
5    all    I2   dich    a1      5  0.8510000   -Inf    Inf  TRUE       none     NaN
6    all    I2   dich     d      6  0.7257898   -Inf    Inf  TRUE       none     NaN
7    all    I2   dich     g      7  0.1500000  0e+00      1  TRUE       none     NaN 
:
18   all    I5   dich     d     18 -0.5626501   -Inf    Inf  TRUE       none     NaN
19   all    I5   dich     g     19  0.1500000  0e+00      1  TRUE       none     NaN 
20   all    I5   dich     u     20  1.0000000  0e+00      1 FALSE       none     NaN
21   all GROUP GroupPars MEAN_1     21  0.0000000   -Inf    Inf FALSE   none     NaN
22   all GROUP GroupPars COV_11     22  1.0000000  1e-04    Inf FALSE   none     NaN

   prior_2
1      NaN
2      NaN
:
21     NaN
22     NaN

> with(modThreePL,parnum[name == 'g'])
    [1]  3  7 11 15 19

> ThreePL@Data$nitems                         # ThreePL was created in Table 6.6
    [1] 5

> itm=3
> for(j in 1:ThreePL_a@Data$nitems[1]){
+      modThreePL[itm,'prior.type']='norm'
+      modThreePL[itm,'prior_1']=-1.5
+      modThreePL[itm,'prior_2'] =0.5
+ itm=itm+4 
+ }   # end for j loop

> modThreePL                                 # checking that prior information was correctly  imposed
   group  item  class  name parnum      value lbound ubound   est prior.type prior_1
1    all    I1   dich    a1      1  0.8510000   -Inf    Inf  TRUE       none     NaN
2    all    I1   dich     d      2  2.3841111   -Inf    Inf  TRUE       none     NaN
3    all    I1   dich     g      3  0.1500000  0e+00      1  TRUE       norm    -1.5
4    all    I1   dich     u      4  1.0000000  0e+00      1 FALSE       none     NaN
5    all    I2   dich    a1      5  0.8510000   -Inf    Inf  TRUE       none     NaN
6    all    I2   dich     d      6  0.7257898   -Inf    Inf  TRUE       none     NaN
7    all    I2   dich     g      7  0.1500000  0e+00      1  TRUE       norm    -1.5
 :
19   all    I5   dich     g     19  0.1500000  0e+00      1  TRUE       norm    -1.5
:

> # use prior information with 'pars=' argument
> print((ThreePL = mirt(mathdata,1,'3PL',SE=T,SE.type='Fisher',pars=modThreePL)))
    Iteration: 37, Log-Lik: -55033.198, Max-Change: 0.00008

(continued)
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TABLE 6.7. (continued)

    Calculating information matrix...
    Warning message:
    In ESTIMATION(data = data, model = model, group = rep("all", nrow(data)),  :
      Information matrix with the Fisher method does not
      account for prior parameter distribution information
    
    Call:
    mirt(data = mathdata, model = 1, itemtype = "3PL", SE = T, SE.type = "Fisher", 
        pars = modThreePL)
    
    Full-information item factor analysis with 1 factor(s).
    Converged within 1e-04 tolerance after 37 EM iterations.
    mirt version: 1.30 
    M-step optimizer: nlminb 
    EM acceleration: Ramsay 
    Number of rectangular quadrature: 61
    Latent density type: Gaussian 
    
    Information matrix estimated with method: Fisher
    Condition number of information matrix = 50656.81
    Second-order test: model is a possible local maximum
    
    Log-posterior = -55033.2
    Estimated parameters: 15 
    DIC = 110096.4
    G2 (16) = 61.17, p = 0
    RMSEA = 0.012, CFI = NaN, TLI = NaN

> print(coef(ThreePL,IRTpars=TRUE,printSE=T),digits=5)
    $I1
              a        b       g  u
    par 1.64259 -1.54157 0.22136  1
    SE  0.11009  0.14091 0.02691 NA
    
    $I2
              a        b       g  u
    par 2.92857 -0.21561 0.16569  1
    SE  0.27594  0.05758 0.05430 NA
    
    $I3
              a       b       g  u
    par 2.45749 0.14175 0.20510  1
    SE  0.22644 0.04933 0.01449 NA
    
    $I4
              a       b       g  u
    par 2.88706 0.52929 0.15035  1
    SE  0.32700 0.02762 0.04145 NA
    
    $I5
              a       b       g  u
    par 1.64094 0.87442 0.15803  1
    SE  0.17635 0.04386 0.04594 NA
    
    $GroupPars
        MEAN_1 COV_11
    par      0      1
    SE      NA     NA

(continued)
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TABLE 6.7. (continued)

> anova(TwoPL,ThreePL)                              # The object TwoPL was created in chapter 5
    
    Model 1: mirt(data = mathdata, model = 1, itemtype = "2PL", SE = T, 
        SE.type = "Fisher")
    Model 2: mirt(data = mathdata, model = 1, itemtype = "3PL", SE = T, 
        SE.type = "Fisher", pars = modThreePL)
    
           AIC     AICc    SABIC       HQ      BIC      DIC    logLik   logPost  df
    1 110417.0 110417.0 110464.0 110442.8 110495.8 110417.0 -55198.50 -55198.50 NaN
    2 110093.1 110093.1 110163.7 110131.8 110211.3 110096.1 -55031.55 -55033.03   5
      Bayes_Factor
    1           NA
    2            0

> itemfit(ThreePL,group.bins=10,empirical.plot=1,empirical.CI=0) # produces figure 6.8 (left)
> itemfit(ThreePL,group.bins=6,empirical.plot=1,empirical.CI=0)  # produces figure 6.8 (right)

> residuals(ThreePL,type="Q3")                                   # yen’s Q3
    Q3 matrix:
           I1     I2     I3     I4     I5
    I1  1.000 -0.185 -0.100 -0.092 -0.059
    I2 -0.185  1.000 -0.300 -0.212 -0.137
    I3 -0.100 -0.300  1.000 -0.208 -0.097
    I4 -0.092 -0.212 -0.208  1.000 -0.158
    I5 -0.059 -0.137 -0.097 -0.158  1.000

> marginal_rxx(ThreePL)
    [1] 0.6104937

> # empirical reliability
> ThreePLrxx=fscores(ThreePL,method="EAP",full.scores=T,full.scores.SE=T,returnER=T)
> ThreePLrxx
           F1 
    0.6294784 

> # examination of invariance ---------  use of priors
> set.seed(99999)  
> caseU=runif(19601)
> sortmathdata=mathdata
> sortmathdata$unif=caseU 
> sortmathdata=sortmathdata[order(sortmathdata$unif),]
> mathdata1=sortmathdata[1:9800,]       ;  mathdata2=sortmathdata[9801:19601,]
> mathdata1=within(mathdata1,rm(unif))  ;  mathdata2=within(mathdata2,rm(unif))
> names(mathdata1) = c(paste0("I",1:5)) ;  names(mathdata2) = c(paste0("I",1:5))

> mathdata1$grp='0'         ;  mathdata2$grp='1'       # create (0,1) group variable

> mathdatagrp=rbind(mathdata1, mathdata2)              # concatenate the two randomized groups
> grpvar=mathdatagrp$grp                               # extract group variable

> mathdatagrp=within(mathdatagrp,rm(grp))
> ThreePLgrp=multipleGroup(mathdatagrp,1,itemtype='3PL',group=grpvar, pars='values')
> ThreePLgrp

> ThreePLgrp
   group  item   class  name parnum     value lbound ubound   est prior.type prior_1
1      0   I1    dich    a1      1  0.8510000   -Inf    Inf  TRUE       none     NaN
2      0   I1    dich     d      2  2.3841111   -Inf    Inf  TRUE       none     NaN
3      0   I1    dich     g      3  0.1500000  0e+00      1  TRUE       none     NaN
4      0   I1    dich     u      4  1.0000000  0e+00      1 FALSE       none     NaN

(continued)
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TABLE 6.7. (continued)

5      0   I2    dich    a1      5  0.8510000   -Inf    Inf  TRUE       none     NaN
6      0   I2    dich     d      6  0.7257898   -Inf    Inf  TRUE       none     NaN
:
41     NaN
42     NaN
43     NaN
44     NaN

> itm=with(ThreePLgrp,parnum[name == 'g'])                 #obtain & store item numbers for ‘g’
> itm 
    [1]  3  7 11 15 19 25 29 33 37 41
> ngrps=2                                                  # number of groups

> # imposing priors on group “0” and group “1”
> for(j in 1:(ThreePL@Data$nitems[1]*ngrps)){
> + ThreePLgrp[itm[j],'prior.type']='norm'; ThreePLgrp[itm[j],'prior_1']=-1.5;  
     ThreePLgrp[itm[j],'prior_2']=0.5   }

> ThreePLgrp                                 # checking that prior information was correctly imposed
   group  item   class  name parnum     value lbound ubound   est prior.type prior_1
1      0   I1    dich    a1      1  0.8510000   -Inf    Inf  TRUE       none     NaN
2      0   I1    dich     d      2  2.3841111   -Inf    Inf  TRUE       none     NaN
3      0   I1    dich     g      3  0.1500000  0e+00      1  TRUE       norm    -1.5
4      0   I1    dich     u      4  1.0000000  0e+00      1 FALSE       none     NaN
5      0   I2    dich    a1      5  0.8510000   -Inf    Inf  TRUE       none     NaN
6      0   I2    dich     d      6  0.7257898   -Inf    Inf  TRUE       none     NaN
7      0   I2    dich     g      7  0.1500000  0e+00      1  TRUE       norm    -1.5
8      0   I2    dich     u      8  1.0000000  0e+00      1 FALSE       none     NaN
:
41     0.5
42     NaN
43     NaN
44     NaN

> ThreePLgrp=multipleGroup(mathdatagrp,1,itemtype='3PL',group=grpvar,pars=ThreePLgrp)
    Iteration: 40, Log-Lik: -55030.224, Max-Change: 0.00010

> ThreePLgrp
    Call:
    multipleGroup(data = mathdatagrp, model = 1, group = grpvar, 
        itemtype = "3PL", pars = ThreePLgrp)
    
    Full-information item factor analysis with 1 factor(s).
    Converged within 1e-04 tolerance after 40 EM iterations.
    mirt version: 1.30 
    M-step optimizer: nlminb 
    EM acceleration: Ramsay 
    Number of rectangular quadrature: 61
    Latent density type: Gaussian 
    
    Log-posterior = -55030.22
    Estimated parameters: 30                               ← nparm*L*2 groups
    DIC = 110120.4
    G2 (1) = 79.67, p = 0
    RMSEA = 0.063, CFI = NaN, TLI = NaN

(continued)
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argument with the multipleGroup function. However, we store the item parameter 
numbers for the two groups in itm to directly access them in our for loop (itm = 
with(ThreePLgrp,parnum[name = = ‘g’])). Group 0’s item parameter numbers 
are the same as above, whereas for group 1 we have 25, 29, 33, 37, and 41. We impose 
the priors on our two groups using a for loop in which the appropriate item numbers 
are indexed by j (i.e., itm[j]). We call multipleGroup a second time and pass to it 
our data frame containing the prior information (pars = ThreePLgrp). Conver-
gence was achieved in 40 iterations. Comparison of group 0’s item parameter estimates 
with those of group 1’s shows close correspondence. Our groups’ IRFs for each item are 
shown in Figure 6.10. At the item level, the agreement between the two sets of IRFs for 

TABLE 6.7. (continued)

> coef(ThreePLgrp,simplify=TRUE,IRTpars=TRUE)
    $`0`                                                  ← Group 0 item parameter estimates
    $items
           a      b     g u
    I1 1.629 -1.584 0.198 1
    I2 2.977 -0.208 0.185 1
    I3 2.474  0.130 0.212 1
    I4 3.184  0.527 0.158 1
    I5 1.661  0.875 0.162 1
    
    $means
    F1 
     0 
    
    $cov
       F1
    F1  1
    
    
    $`1`   Group 1 item parameter estimates
    $items
           a      b     g u
    I1 1.637 -1.565 0.198 1
    I2 2.931 -0.210 0.155 1
    I3 2.429  0.151 0.197 1
    I4 2.644  0.532 0.143 1
    I5 1.622  0.875 0.155 1
    
    $means
    F1 
     0 
    
    $cov
       F1
    F1  1

> plot(ThreePLgrp, type = 'trace', theta_lim=c(-4,4))         # figure 6.10
> plot(ThreePLgrp,type="score",theta_lim=c(-4,4))             # figure 6.11
> 
> # end of examination of invariance --------- 

> plot(ThreePL, type = 'trace', theta_lim=c(-4,4))            # produces figure 6.9 (top)
> plot(ThreePL, type = 'infotrace', theta_lim=c(-4,4))        # produces figure 6.9c (top)
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each item provides us with evidence of invariance. (Because our item parameter point 
estimates show estimation error, we interpret the minor discrepancies between IRFs as 
being within this margin of error.) Additionally, at the “model level,” our groups’ total 
characteristic curves (TCCs) show strong agreement with one another and provide us 
with additional invariance evidence (Figure 6.11).

Assessing Person Fit: Appropriateness Measurement

Various person fit measures have been previously discussed. From one perspective, these 
measures are trying to determine whether the person is behaving in a fashion consistent 
with the model. Alternatively, one may ask, what is the appropriateness of a person’s 
estimated location,   �θ, as a measure of their true location (θ)? For instance, imagine that 
a person has a response pattern of missing easy items and correctly answering more dif-
ficult items. Did this pattern arise from the person’s correctly guessing on some difficult 
items and incorrectly responding to easier items, or does this reflect a person who was 
able to copy the answers on some items? Various statistically based indices have been 
developed to measure the degree to which an individual’s response pattern is unusual or 
is inconsistent with the model used for characterizing their performance. These indices 
of person fit are examples of appropriateness measurement (e.g., Levine & Drasgow, 1983; 
Meijer & Sijtsma, 2001).

One index, lz, has been found to perform better than other person fit measures (e.g., 
Drasgow, Levine, & McLaughlin, 1987; Drasgow, Levine, & Williams, 1985). This index 
is based on a standardization of the person log likelihood function to address the inter-
action of lnL and θ. As such, this standardization of log likelihood allows us to compare 
individuals at different θ levels on the basis of their lz  values.

FIGURE 6.8. IRF for item 1 with observed proportions (left: 10 fractiles; right: 6 fractiles).
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FIGURE 6.9. IRFs and item information for all items.
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To present lz we start with the log likelihood function for a person i’s response vec-
tor

  (6.8)

To standardize lnL we need both its variance and expected value. The expected value of 
the lnL is given by

 
L

1
(ln ) [ ln( ) (1 ) ln(1 )]j j j j

j
L p p p pε

=

= + − −∑  (6.9)

and its variance by

 

2
L

1
(ln ) (1 ) ln

1
j

j j
j j

p
Var L p p

p=

   = −   −    
∑  (6.10)

FIGURE 6.10. IRFs for two-group analysis.
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Using Equations 6.8–6.10 and the z-score formula, we obtain

 
zl  = 

ln (ln )
(ln )

L L
Var L

ε−
 (6.11)

In practice, we use estimates in lieu of parameters in the calculation of pj (e.g.,   �θ for θ).
Although lz is purported to have a unit normal distribution, this has not necessar-

ily been true for instruments of different lengths (Drasgow et al., 1985, 1987; Levine & 
Drasgow, 1983). Moreover, because the lz uses person parameter estimates in its cal-
culation, it is not asymptotic normal. To this end, Nering (1995) found lz’s detection 
accuracy approaching the significance level is adversely affected by how well the per-
son locations are estimated. Therefore, using the standard normal curve for hypothesis 
testing with lz may be inadvisable in some situations. Nevertheless, various guidelines 
exist for using lz for informed judgment. In general, a “good” lz is one around 0.0. A 
negative lz reflects a relatively unlikely response vector (i.e., inconsistent responses), 
whereas a positive value indicates a comparatively more likely response vector than 
would be expected on the basis of the model (i.e., hyperconsistent responses). Also see 

FIGURE 6.11. Total characteristic curves for two-group analysis.
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 Appendix G, “The Person Response Function,” for a graphical approach that can be used 
for detecting aberrant response vectors.

Snijders (2001) proposed an alternative to lz that addresses the use of person esti-
mates in its calculation. Thus, Snijders modifies lz by incorporating a set of modification 
weights (  � w  j) in calculating l *

z

 *
zl  = L 0

*

ln (ln )
(ln )

L L c r
Var L
ε− +

, (6.12)

where  { }
L

* *2

1
(ln ) (1 )j j j

j
Var L p p w

=

= −∑ , *
jw  = j n jw c r− , Lc  = 

L L

1 1
j j j j

j j
p w p r

= =

′ ′∑ ∑

(p j
  is the first derivative of the model), wj = ln[pj/1 – pj], rj depends on the model, and r0 

depends on the ability estimation technique and model. For example, for the 1PL model 
rj = 1, for the 2PL model rj = αj, and the 3PL rj = [αj exp(θ – δj)]/[χj + αj exp(θ – δj)] with 
r0 = 0 for MLE and r0 = –θ for MAP and a θ distribution that is N(0,1) (Magis, Raîche, 
& Béland, 2012).

The R package PerFit (Tendeiro, Meijer, & Niessen, 2016, 2018) can be used to 
calculate lz and l *

z  as well as other person fit statistics. Table 6.8 shows our R session 
for obtaining l *

z  for our math data calibration using mirt. We begin by extracting our 
item parameter estimates into the object itests and then convert our person esti-
mates to a vector PersonEst. Both are passed to the lzstar function to calculate 
each person’s l *

z  with the results stored in the object lzstar _ stat. We then use the 
cutoff function to obtain a screening value for the 5% level (Blvl = .05); cutoff 
uses 1000 bootstraps to generate an empirical sampling distribution and determine the 
value that cuts off 5% of the distribution. Passing the l *

z  results (lzstar _ stat), and 
the cutoff function’s output object (lzstarcut _ 05) to the flagged.resp func-
tion allows us to create an object that contains those cases whose |l *

z | values exceed 
the absolute value of screening point ($Cutoff = –1.8083). For our example, 562 cases 
(2.87% of our sample; Prop.flagged) are identified as having |l *

z | values exceeding 
the |screening point| value.

Figure 6.12 contains the distribution of l *
z  values, with the vertical line indicat-

ing the screening value’s location (–1.808) along with its confidence band (CB) on the 
abscissa. Thus, cases to the left of the vertical line are potentially misfitting persons. 
Alternatively, the lower bound of the CB could be used if one wishes to take into estima-
tion error in identifying individuals for further examination. In this latter case, the tick 
marks on the top of the graph identify these potentially misfitting persons. Below we 
examine some cases from this distribution.

From above we know that items 1–5’s P-values are 0.887, 0.644, 0.566, 0.427, and 
0.387, respectively. Thus, for the first case identified (FlaggedID = 20–the 20th line in 
the data file), they incorrectly answered the easiest and hardest items as well as an item 
of moderate difficulty (x = 01010). In contrast, the case with the FlaggedID of 19306 
incorrectly answered the easiest item, but correctly answered the progressively more 
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TABLE 6.8. PerFit Session to Obtain *
zl  for the 3PL Calibration of the 

Mathematics Data (Prior)a

> library(PerFit)
> packageVersion("PerFit")
    [1] ‘1.4.3’

> itests=coef(ThreePL,simplify=TRUE,IRTpars=TRUE)$items 
         [,c('a','b','g')]                                           # extract estimates
> PersonEst=as.vector(peopleThreePL[,1])
> lzstar_stat=lzstar(mathdata, IRT.PModel = "3PL",Ability=PersonEst,IP=itests)  

> # determine screening value for the 5% level
> lzstarcut_05=cutoff(lzstar_stat,ModelFit="Parametric", Blvl=.05)
> FlgdCase_lzstar = flagged.resp(lzstar_stat,cutoff.obj=lzstarcut_05,scores=T)
> FlgdCases=FlgdCase_lzstar$Scores
> FlgdCase_lzstar$Cutoff
    $Cutoff
    [1] -1.8083
    
    $Cutoff.SE
    [1] 0.1751
    
    $Prop.flagged
    [1] 0.0287
    
    $Tail
    [1] "lower"
    
    $Cutoff.CI
       2.5%   97.5% 
    -1.9985 -1.4599 
    
    attr(,"class")
    [1] "PerFit.cutoff"

> FlgdCases=FlgdCase_lzstar$Scores
> head(FlgdCases,6)
         FlaggedID It1 It2 It3 It4 It5 PFscores
    [1,]        20   0   1   0   1   0  -2.4340
    [2,]        35   0   1   1   0   0  -1.7903
    [3,]        41   1   0   1   1   1  -1.6627
    [4,]        45   0   1   1   1   0  -2.9155
    [5,]        55   0   1   1   1   0  -2.9155
    [6,]       114   1   0   1   1   1  -1.6627

> tail(FlgdCases,4)
           FlaggedID It1 It2 It3 It4 It5 PFscores
    [559,]     19306   0   1   1   1   1  -4.0532
    [560,]     19354   0   1   1   0   1  -2.7950
    [561,]     19525   0   1   1   0   1  -2.7950
    [562,]     19533   0   1   1   1   0  -2.9155

> # for consistency with the above results we pass the cutoff object to the
> # plot function otherwise it will recompute the screening value
> plot(lzstar_stat,cutoff.obj=lzstarcut_05,Type="Histogram")     # produces figure 6.12

> PRFplot(mathdata,respID=19601,IP=itests,Ability=PersonEst)     # produces figure 6.13
    Respondent 19601: Press ENTER.

> PRFplot(mathdata,respID=19306,IP=itests,Ability=PersonEst)     # produces figure 6.13
    Respondent 19306: Press ENTER.

aThe cutoff function uses a bootstrap to determine the screening value. The bootstrap uses a random number generator. 
The seed used is 88888.
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difficult items. Both of these individuals are not behaving consistently with expecta-
tions. As such, their   �θs may be inappropriate for them. Of course, with only five items 
we have a small item sample and insufficient information to fully determine if these are 
a problem. For example, if we had 20 items, we might very well find that 19,306 would 
behave consistent with expectations.

With five items we can easily look at the response pattern. However, with a longer 
instrument a graphical approach may be more instructive. Therefore, to demonstrate a 
graphical approach, we use the PRFplot function to obtain the person response func-
tion (PRF). As discussed in Appendix G, the PRF relates the probability of a response 
of 1 to item location. In Figure 6.13, we show the PRFs for two persons. The left side 
is for a person (#19,601) who was not identified as potentially misfitting. This person’s 
response pattern of 11110 (i.e., correctly answering all items except the most difficult) 
and PRF are consistent with what is expected. That is, as items become more difficult 
relative to this person’s   �θ, the probability of a correct response decreases;   �θ19601 = 0.720. 
In contrast, person #19,306 (x = 01111;   �θ19306 = 0.404) has a PRF that is inconsistent 
with what one would expect using the 3PL model. One possible explanation of this 
x is that this person’s initial inattentiveness/carelessness may have led to their incor-
rect response to the first item, although they had the ability to correctly answer the 
easiest item. Thus, this person should have had a x = 11111 with a commensurate   �θ 
of 1.233. Alternatively, it may be that the person guessed and/or copied some or all of 
their responses to items 2–5. In this case, their x should be something along the lines 
of 00000, with an   �θ = –1.396. It is also possible that there is something unique about 

FIGURE 6.12. Distribution of person fit scores.
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item 1 that led this person to respond incorrectly. In other words, the   �θ19306 of 0.404 is 
an inappropriate estimate of this person’s math ability. Of course, we have insufficient 
information to determine the cause of this person’s response pattern.

Information for the Three-Parameter Model

The amount of information an item provides for estimating θ under the 3PL model is

 
2

2
2

( ) 1
( )

(1 )
j j j

j j
j j

p p
I

p
χ

θ α
χ

   − −
=    −      

. (6.13)

Because guessing behavior reflects “noise,” it may be intuited that one effect of a 
nonzero χj is to reduce the amount of information available for locating people on the 
θ continuum.10,11 Equation 6.13 shows that this is indeed the case. For a given αj and 
δj, an item provides more information for person estimation when χj = 0 than when it 
is nonzero. Therefore, for the 3PL model the upper limit of Ij(θ) is given by the more 
restrictive 2PL model. If one sets χj = 0 and simplifies, then Equation 6.13 reduces to 
Equation 5.4.

In contrast to the 1PL and 2PL models with their maximum item information at δj, 
Figure 6.5 shows that for the 3PL model the peak of the item information does not occur 
at δj but slightly above it. This offset from δj is given by12

 

1 81ln
2 2

j

j

χ

α

 +
 +
   . 

At this location, the maximum item information value is (Lord, 1980)

FIGURE 6.13. Person fit plots for fitting person (left) and misfitting person (right).
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. (6.14)

As has previously been the case, the total information for an instrument is the sum 
of the item information

 ( )I θ  = 
L

2
1

1 ( )
( ) j

je

I θ
σ θ =

= ∑ . (6.15)

In the foregoing, we have focused on the amount of information an item provides 
for estimating a person’s location.13,14 However, we can also look at how much infor-
mation the calibration sample provides for estimating a particular item parameter. The 
information for estimating αj, δj, and χj is, respectively (Lord, 1980).
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and
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In Figure 6.14, we present the information function (dash line) for estimating α5  
with item 5’s IRF (solid line) overlaid.15 As can be seen, the information function is 
bimodal with different maxima. These different maxima reflect that we have a nonzero 
χ5. As χj increases, the left maximum decreases and shifts its location, whereas the right 
maximum increases in value and stays at the same θ location. The modes are located in 
the θ neighborhood of the IRF beginning its trajectory toward becoming asymptotic. It 
is also apparent that the modes occur on opposite sides of the item’s location, with the 
leftmost mode always less than the rightmost mode. This characteristic is a reflection of 
positive α5 (i.e., if α5 < 0, then the leftmost mode would be greater than the rightmost 
mode). As αj decreases, the distance between the modes increases, the maxima values 
increase, and function broadens. The location of the minimum (i.e., 0) of the informa-
tion function between the two modes corresponds to δs. In other words, persons located 
at the item’s location do not contribute information for estimating the item’s discrimina-
tion.

Figure 6.15 shows that the information function for estimating δj is unimodal, with 
the mode located at the item’s δj. Therefore, individuals around the item’s location pro-
vide the greatest information for estimating δ. As is the case with Figure 6.14, the dif-
ferent heights of the modes across the items is a reflection of the interaction among the 
item’s parameters as well as their different values across items. In short, poor estima-
tion of one or more of the parameters (e.g., χj) affects the estimation of the item’s other 
parameter(s).
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FIGURE 6.14. Information for estimating αj as a function of θ for item 5 (  �α5 = 1.608,   �δ5 = 0.883,  

 �χ5 = 0.156).

FIGURE 6.15. Information for estimating δj as a function of θ for each of five items.
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With respect to χj one sees (Figure 6.16) that most information for estimating χj  
comes from the lower end of the θ continuum. Depending on the particular item, there 
is virtually no useful information for estimating χj from individuals located above 2.0. 
However, the information functions’ plateaus show that even at the lower end of the θ 
continuum there is a finite amount of information available for estimating χj. Moreover, 
the larger the χj, the greater the shift in the beginning of this plateau toward the lower 
end of the continuum than when χj is smaller. We also see that the larger the χj, the lower 
the plateau, indicating less information for estimating these large χj values than for esti-
mating smaller χj values.

For completeness, we now discuss the information functions for the 1PL and 2PL 
models. If we plot the information functions for estimating δj for the 1PL model, we 
find that across items the corresponding information functions have a constant height, 
with the location of the modes corresponding to the items’ δjs. In addition, the informa-
tion functions for estimating a common α across items are bimodal, but unlike the 3PL 
model case, the functions have a constant height across modes and across items. The 
minima of the information functions are zero and occur between the two modes at the 
items’ δjs.

For the 2PL model, the information function for estimating the δj is also unimodal. 
Its height across items varies as a direct function of the items’ αjs, with the location of 
the modes corresponding to an item’s δj. With respect to item discrimination, the infor-
mation function for estimating αj is bimodal, with a constant height across the modes 
for an item and equidistant from δj. However, the modes vary across the items as an 

FIGURE 6.16. Information for estimating χj as a function of θ for each of five items.
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indirect function of the items’ αjs. As is the case with the 1PL and 3PL models, the loca-
tion of the minimum of the information function between the two modes corresponds 
to the item’s δj and has a value of 0.

Metric Transformation, 3PL Model

Linear rescaling of αj and δj (or their estimates) is accomplished as performed with the 
2PL model. Because the pseudo-guessing parameter is on the probability scale, it does 
not have an indeterminacy in its scale and there is no need to rescale χj. Person location 
parameters (or their estimates) are transformed by θ* = ζ(θ) + κ.

The total characteristic curve for the 3PL model is determined as shown, for exam-
ple, in Chapter 4. As is the case with the 1PL and 2PL models, all individuals with the 
same location, θ, obtain the same expected trait score, T. Furthermore, neither θ nor 
T depends on the distribution of persons. However, unlike the case with the previous 
models, with the 3PL the TCC lower asymptote is asymptotic with j

j
χ∑ . As an example, 

the expected trait score for individuals with a   �θ of 1.1746 on our mathematics test would 
be

 Τ  = 
L

jp∑  = 0.9927 + . . . + 0.6813 = 4.4952. 

Therefore, a person with an estimated location of 1.1746 would be expected to obtain 
almost 4.5 correct answers on the mathematics test. Figure 6.17 contains the TCC with 
the transformation of   �θ = 1.1746 to its corresponding T identified. Comparing this fig-
ure with the TCC for the 1PL model (Chapter 4, Figure 4.9) shows that it is steeper than 
the 1PL model’s. The steepness of the TCC is a function of not only the discrimination 
parameter estimates (for the 3PL model the mean α is 2.3778 and for the 1PL model the 
common α is 1.421), but also the variability of the δjs as well as the magnitude of the χjs. 
As is seen, the lower asymptote of the TCC approaches the jχ∑  = 0.889, and its upper 
asymptote is the instrument’s length because ϒj = 1 for all IRFs.16

Handling Missing Responses

From the preceding discussion, we know that IRT models are concerned with model-
ing observed responses. However, in working with empirical data, one will, at times, 
encounter situations where some items do not have responses from all individuals in 
the calibration sample. Some of these missing data may be considered to be missing by 
design or may be structurally missing. For example, one may administer an instrument 
to one group of people and an alternate form of the instrument to another group. If these 
two forms have some items in common, then the calibration sample can consist of both 
groups. As a result, our data contain individuals who have not responded to all items. 
Figure 11.1 in Chapter 11 contains a graphical depiction of this. In situations where 
the nonresponses are missing by design, these missing data may be ignored because 
of the IRT properties of person and item parameter invariance. However, when non-
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responses are not structurally missing, then one needs to consider how to treat these 
nonresponses. We begin with a brief overview of a taxonomy for missing data and then 
address handling missing data in the IRT context.

In general, missing data (e.g., omitted responses) may be classified in terms of the 
mechanism that generated the missing values. According to Little and Rubin (1987), 
missing data may be classified as missing completely at random (MCAR), missing at ran-
dom (MAR), and missing not at random (MNAR; a.k.a., NMAR: not missing at random). 
MCAR refers to data in which the missing values are statistically independent of the val-
ues that could have been observed, as well as other variables. In contrast, when data are 
MAR, then the missing values are conditionally independent of one or more variable(s). 
In both of these cases, the data are missing at random either unconditionally (MCAR) or 
conditionally on one or more variables (MAR). If the data are neither MCAR nor MAR, 
then the missing values are considered to be MNAR and are nonignorable. Nonignor-
able missing values are data for which the probability of omission is related to what the 
response would be if the person had responded.

Various approaches for handling missing data have been developed. Some of these 
approaches share the goal of creating “complete data,” so standard analysis techniques 
may be applied. For instance, complete data may be created by deleting either the case 
that contains the missing value(s) either in its entirety or some subset of the case, or by 
replacing the missing value(s) by estimate(s) of what the missing value could have been. 
The replacement of the missing values by estimates is, in general, known as imputa-
tion. There are a number of single imputation methods (e.g., cold-deck imputation, hot-

FIGURE 6.17. TCC for the five-item mathematics instrument calibrated with the 3PL model.
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deck imputation, mean substitution) as well as multiple imputation methods. Multiple 
imputation (MI) methods differ from single imputation methods by creating multiple 
(imputed) complete data sets to model the uncertainty in sampling from a population, 
whereas only one complete data set is created with single imputation. Other miss-
ing data methods are maximum likelihood-based. For greater detail, see C. H. Brown 
(1983); R. L. Brown (1994); Dillman, Eltinge, Groves, and Little (2002); Enders (2001, 
2003); and Roth (1994).

Returning to the IRT context, there are various reasons why an individual’s response 
vector may not contain responses to each item. We present three conditions that lead to 
missing data. The first condition is mentioned above. In the missing by design case (e.g., 
not-presented items), such as in adaptive testing (Appendix D) or simultaneous calibra-
tion (see Chapter 11), the nonresponses represent conditions in which the missingness 
process may be ignored for purposes of person location estimation (Mislevy & Wu, 
1988, 1996). Therefore, the estimation is based only on the observed responses.

A second situation that produces missing data occurs when an individual has insuf-
ficient time to answer the item(s). These not-reached items are (typically) identified as 
collectively occurring at the end of an instrument (this assumes the individual responds 
to the test items in a serial fashion) and represent speededness. (Of course, the absence 
of not-reached items does not mean that speededness did not occur because respon-
dents may randomly guess on items.) Although IRT should be applied to unspeeded 
tests, Lord (1980) stated that if we knew which items the examinee did not have time 
to consider, then these not-reached items may be ignored for person location estimation 
because they contain no readily quantifiable information about the individual’s location 
(e.g., their proficiency). Therefore, when one has (some) missing data due to not-reached 
items, then the person’s location is estimated using only the observed responses. How-
ever, this should not be interpreted as indicating that one should apply IRT to speeded 
instruments nor that these not-reached items are unaffected by being speeded. Speeded 
situations may lead to violation of the unidimensionality assumption and biased item 
parameter estimates. Research has shown that the speeded items’ αjs and δjs are overes-
timated and the χjs underestimated (Oshima, 1994). Because of the overestimation of αj, 
the corresponding item information and, therefore, the instrument’s total information 
becomes inflated. Identifying the speeded items as not-reached within BILOG mitigates 
the bias in item parameter estimation. (See Goegebeur, De Boeck, Wollack, and Cohen 
[2008] for a gradual process change model that models speededness as a person-specific 
effect.)

The third situation that produces missing data occurs when an examinee inten-
tionally chooses to not respond to a question for which they do not know the answer. 
These omitted responses represent nonignorable missing data (Lord, 1980; Mislevy & 
Wu, 1988, 1996). Again, assuming that an individual responds in a serial fashion to an 
instrument, omitted responses may be distinguished from not-reached items because 
omits appear throughout the response vector and not just at the end of the vector. Lord 
(1980) has argued that omitted responses should not be ignored because an individual 
could obtain as high a proficiency estimate as they wished by simply answering only 
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those items they had confidence in answering correctly. This idea has found some sup-
port in Wang, Wainer, and Thissen’s (1995) study on examinee item choice.

The effect of omitted responses on EAP person location estimates has been studied 
(de Ayala, Plake, & Impara, 2001; de Ayala, 2006; Finch, 2008; Glas & Pimentel, 2008; 
Rose, von Davier, & Xu, 2010). Results show that for dichotomous data, omits should 
not be treated as incorrect, nor should they be ignored; also see Lord (1974a, 1983c). 
However, using a fractional value of 0.5 in place of omitted values leads to improved 
person location estimation, compared with treating the omits as incorrect or using a 
fractional value equal to the reciprocal of the number of item options (i.e., 1/m where 
m is the number of response categories). (The 1/m approach assumes that an individual 
responds randomly to a multiple-choice item format and was suggested by Lord [1974a, 
1980].) The results also seem to indicate that this would be true for MLE person loca-
tion estimation. By using this fractional value, one is simply imputing a response for 
a binomial variable and thereby “smoothing” irregularities in the likelihood function. 
Although this research was conducted using the 3PL model, it appears that the results 
would apply to both the 1PL and 2PL models.

An alternative approach that may be fruitful in some situations is to treat omission 
as its own response category and apply a polytomous model such as the multiple-choice 
model or the nominal response model; both models are discussed in Chapter 9. Addi-
tionally, Holman and Glas (2005) present a “multiple” model approach that uses an 
IRT model to model the missing-data process and an IRT model for the observations. 
Missingness can also be addressed using MI. Several MI routines are available, includ-
ing SAS proc mi, SPSS’s multiple imputation (or EM from missing value 
 analysis) (SPSS Incorporated, 2019), Missing Value Analysis (SYSTAT, 2017), 
or, for example, the R package mice (van Buuren & Groothuis-Oudshoorn, 2011, 
2019). These routines assume that missing data are MAR. After imputation of omitted 
responses these complete data may then be calibrated.

The practitioner should be aware of several issues in the treatment of omits. For 
instance, in the context of proficiency assessment, all imputation procedures that 
produce complete data for analysis are, in effect, giving partial credit for an omitted 
response. For example, Lord’s (1974a, 1980) suggested use of 1/m gives an individual 
partial credit worth, say 0.2 (i.e., m = 5), for having omitted an item. A second issue to 
be aware of is that using the same imputed value for all omits assumes that individuals 
located at different points can all be treated the same. These issues are raised so that 
the practitioner understands the assumptions that are being made with some of the 
missing data approaches discussed. However, these may or may not be of concern to 
a particular practitioner. For example, when IRT is used in personality testing or with 
attitude or interest inventories, these may be nonissues. A third issue to be noted is that 
omits tend to be associated with personality characteristics, demographic variables, and 
proficiency level (Mislevy & Wu, 1988; Stocking, Eignor, & Cook, 1988). Thus, in those 
situations where information on these variables is available, one may wish to use this 
information as covariates in the imputation process. Use of these covariate(s) may or 
may not have any meaningful impact on the person location estimates.

When calibrating a data set, it is good practice to identify items without responses 
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by some code. For instance, in the data file, not-reached items may be identified by a 
code of, say, 9, not-presented items by a code of 8, omitted items by a code of 7. With cer-
tain calibration programs (e.g., BILOG-MG), any ASCII character may be used (e.g., the 
letters “R” for not-reached, “P” for not-presented, and “O” for omit). In these cases, the 
code used must be identified for the program. With BILOG one would use the KFName, 
NFName, and/or OFName subcommands on the GLOBAL or INPUT command line, 
depending on the version of BILOG one is using. For BILOG, omitted responses must 
be identified as such, whereas with other programs any response code encountered in 
the data file that is not identified as a valid response is considered to reflect an omitted 
item. Omitted responses that have been identified by an omitted response code are, by 
default, treated as incorrect by BILOG.

Issues to Consider in Selecting  
among the 1PL, 2PL, and 3PL Models

The issues to be considered in selecting among the 1PL, 2PL, and 3PL models involve, 
in part, one’s philosophy of whether the data should fit the model or vice versa (see 
 Chapter 2), as well as the application context (e.g., sample size, instrument character-
istics and considerations, assumption tenability, political realities). Given that the 1PL 
model is the most restrictive of the three models, there have been a number of studies 
that have investigated use of the 1PL model when it misfits. For instance, Forsyth, Sai-
sangjan, and Gilmer (1981) investigated the robustness of the Rasch model when the 
dimensionality and constant α assumptions are violated. Because their empirical data 
came from an examination using a multiple-choice item format, it was assumed that 
some examinees would engage in guessing. Forsyth et al. concluded that “the Rasch 
model does yield reasonably invariant item parameter and ability estimates . . . even 
though the assumptions of the model are not met” (p. 185). Similar results were obtained 
by Dinero and Haertel (1977) using simulation data.

Wainer and Wright (1980) stated, “It seems that the Rasch model yields rather 
good estimates of ability and difficulty even when its assumption of equal slopes is 
only roughly approximated” (p. 373). Furthermore, Lord and Novick (1968) stated, “It 
appears that if the number of items is very large, then inferences about an examinee’s 
ability based on his total test score will be very much the same whether” (p. 492) the 
Rasch model or the 3PL model is used. In this regard, recall that for the mathematics 
data example the Pearson correlation between the   �θs based on the 1PL and the 3PL 
models’   �θs for the example’s data is 0.9764. For the other model combinations, we have 
a correlation of 0.9907 for the 1PL and the 2PL models’   �θs, and for the 2PL and the 3PL 
models’   �θs the correlation is 0.9859. Although these are all reasonably strong correla-
tions, the correlations among the standard errors, se(  �θ)s, for the various model combi-
nations paint a different picture. The correlation between the 1PL model estimated stan-
dard errors and those of the 2PL model is 0.9721, between the 1PL model and the 3PL 
model the correlation is 0.3318, and for the 2PL and the 3PL models’ estimated standard 
errors it is 0.2275. Therefore, in situations where confidence bands about   �θ are used for 
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classification decisions, the same individual would be classified differently depending 
on the model used. Presumably, using longer instruments would allow for greater agree-
ment among the standard errors. Moreover, the magnitude of the correlations between 
the 1PL, 2PL, and 3PL models’   �θs would be affected by the correlation between αj and 
δj (Yen, 1981).

For samples of 200 or fewer, Lord (1983a) found that the Rasch model was slightly 
superior to the 2PL model in terms of person estimation. As previously mentioned, 
Thissen and Wainer (1982) studied the asymptotic standard errors of the one-, two-, and 
three-parameter models. They suggested fitting the 1PL model first and examining its 
model–data fit. If only a few items misfit and they could be omitted without adversely 
affecting the instrument (e.g., the validity of the   �θs), then one should consider removing 
them. However, if the omission of these misfitting items is problematic, then one should 
increase the sample size and try to fit the 2PL model (presumably the item[s] misfit is 
due to varying item discrimination). In contrast, Gustafsson (1980) suggested grouping 
the items into homogeneous subsets rather than removing them from the instrument. 
For instance, looking at the mathematics 2PL model calibration example, we see that 
in terms of the   �αjs there are three groupings of items. Items 3 and 4 are very similar 
in terms of their   �αjs, items 1 and 5 are somewhat similar to one another, and item 2 
is substantially different from the other four items. Therefore, three subsets could be 
created for the mathematics data example. Assuming item misfit is due to varying item 
discrimination, we can alternatively use the OPLM model approach in which the item 
locations are estimated but the item discrimination(s) are imputed (Verhelst & Glas, 
1995; Verhelst et al., 1995). The use of mixture models (see Appendix F, “Mixture Mod-
els”), as well as some of the models presented in von Davier and Carstensen (2007), may 
also provide additional solutions. (It should be recalled that the desirable properties of 
the Rasch model [e.g., specific objectivity] hold only when one has model–data fit.)

Yen (1981) advocates a process of first fitting all three models (i.e., 1PL, 2PL, 3PL) 
to the empirical data set of interest. Subsequently, simulation data sets are generated 
based on item parameter distributions that are similar to those found with the calibra-
tion of the empirical data set. For example, we would generate a data set using the 1PL 
model, another with the 2PL model, and so on. The final step involves comparing the 
fit analyses across models in conjunction with the fit analysis of the empirical data to 
facilitate model selection.

In a simulation study, Yen (1981) generated different data sets based on various 
models and compared the fit of the 1PL, 2PL, and 3PL models to these data. When she 
used the 3PL model for data generation, she found that the 2PL model fitted the data 
almost as well as the 3PL model did, although the item parameters estimates were not 
the same across the two models. She noted that when an item was difficult and had a 
moderate to high discrimination, it was difficult for the 2PL to model a nonzero lower 
asymptote. She concluded that although the 2PL model performed almost as well as the 
3PL model in modeling the response vectors, one might observe sample dependency 
when difficult items have their discrimination parameters estimated with low-profi-
ciency-level examinees.

As may be inferred from the above, there are variants of the dichotomous models. 
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For instance, it is possible to constrain the 3PL model to produce modified versions, 
such as constraining the αjs to a constant value as well as the χjs to a nonzero value. This 
model is sometimes referred to as a modified 1PL model (Cressie & Holland, 1983; also 
see Kubinger & Draxler, 2007). Furthermore, one may use the 3PL model with the χjs 
for certain problematic items fixed to a constant nonzero value, whereas χj is estimated 
for other items. In general, for those situations where one is not holding χjs fixed, it 
would be prudent (as done above) to use a prior distribution on the χjs when estimating 
the lower asymptotes. In addition, with some data, one may obtain unreasonably large 
estimates of αj (e.g., greater than 3). For these situations, use of a prior distribution on 
the αjs may be in order.

As discussed in this chapter and the preceding chapters, it is the validity of the per-
son location estimates that is paramount. From a pragmatic perspective, if convincing 
validity evidence can be accrued for person location estimates using a particular model 
in a particular application, then it would seem that the above arguments, though inter-
esting in their own right, are somewhat irrelevant.18

Summary

The 3PL model attempts to obtain useful information from a response pattern over and 
above that contained in the response vector’s observed score. To achieve this objective, 
the 3PL model consists of parameters that reflect the item’s location and discrimina-
tion as well as the lower asymptote of the IRF. As is true with the 2PL model’s IRFs, 
the 3PL model’s IRFs may potentially cross because the 3PL model allows for varying 
discrimination. With the 3PL model, item discrimination is proportional to the slope 
of the IRF at the point of inflexion and is equal to 0.25αj(1 – χj). In addition, the 3PL 
model’s IRFs may cross because the model allows for the lower asymptote parameters, 
χjs, to vary across items. The lower asymptote parameter is restricted to the range 0 to 1 
(inclusive) and reflects the probability of obtaining a response of 1 by individuals who 
are extremely low on the latent variable continuum. The lower asymptote parameter is 
typically referred to as the pseudo-guessing parameter.

In previous chapters, fit is investigated in terms of item statistics, empirical and 
predicted IRFs, and examination of the invariance of item parameter estimates across 
random calibration subsamples. In this chapter, we also used ΔR2R∆  and ΔG2 for assess-
ing relative model–data fit. Moreover, we introduced an appropriateness index to gauge 
person fit and the Q 3

P  and Q3 statistics for assessing the tenability of the conditional 
independence assumption. The Q 3

P  and Q3 statistics may be useful for identifying sets of 
items that are exhibiting item dependence. When items are found to be interdependent, 
it may make sense to bundle them together and obtain an item score for the item parcel. 
The resulting item score is polytomous and ordinal in nature (i.e., a larger item score 
reflects more of the latent variable than does a smaller value). The analysis of these data 
can be accomplished through a polytomous model.

Chapter 7 introduces polytomous models that are derived from the Rasch model. 
These models, the partial credit and rating scale models, are appropriate for ordinal 
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polytomous data. These models assume that an instrument’s items are equally effective 
in discriminating among individuals. As the models’ names imply, the partial credit 
model can be used with data that reflect degrees of response correctness, whereas the 
rating scale model can be used with data from response formats, such as the Likert or 
summated ratings format. In actuality, both models are applicable to data that reflect 
degrees of response endorsement, but they differ from one another in their respective 
simplifying assumptions. In Chapter 8, use of polytomous models for ordinal data con-
tinues, but with models that are not based on the Rasch model.

Notes

 1. Although the three-parameter model allows for the possibility that the lower asymp-
tote is nonzero, the upper asymptote is still 1.0. That is, as θ approaches positive 
infinity, the probability of a response of 1 is 1.0 or, symbolically, p(x = 1 | θ → ∞) → 1. 
An alternative model, the four-parameter logistic model (Barton & Lord, 1981), 
extends the three-parameter model to allow for the possibility that persons with 
very large θs may still not have a success probability equal to 1 (see McDonald, 
1967). The motivation behind the model’s development was to improve person loca-
tion estimation. For instance, if a person with a very large θ makes a clerical error 
on an easy item, then their estimate would be more drastically lowered using a 
model with an upper asymptote of 1 than when this asymptote was less than 1 
(Barton & Lord, 1981). To address this situation, Barton and Lord (1981) introduced 
a parameter that reflected the IRF’s upper asymptote (ϒj) into the 3PL model. As a 
consequence, as θ goes to ∞ the probability of a response of 1 is ϒj or, symbolically, 
p(x = 1 | θ → ∞) → ϒ. The four-parameter logistic (4PL) model is
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( )( 1| , , , , ) ( )
1

j j

j jj j j j j j j j
ep x

e

α θ δ

α θ δθ α δ χ χ χ
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 (6.19)

Barton and Lord (1981) compared the model in Equation 6.19 to the 3PL model 
using empirical data. They found that the 3PL model did as well or better than the 
4PL model. Barton and Lord concluded that “there is no compelling reason to urge 
the use of this <4PL> model” (p. 6). However, it should be noted that although the αjs, δjs, 
and χjs were estimated (using JMLE), the ϒjs were not estimated. Rather, the ϒjs  
were held fixed at either 0.98 or 0.99. Given the study’s design decisions, it is doubt-
ful that this one study should be considered definitive. In contrast, Loken and Ruli-
son (2010) using WinBUGS (Spiegelhalter, Thomas, Best, & Lunn, 2004) obtained 
promising estimation results in the estimation of all four item parameters. mirt 
and SAS proc irt can be used to estimate the 4PL model.

2. The first derivative of the 3PL model is
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Because by definition αj is defined at θ = δj, pj simplifies to
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and (1 – pj) simplifies to
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By substitution for pj in p j
  we obtain

    

1 1
( ) 1 2 2
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When the D scaling constant is used, then the slope for the 3PL model is 

0.25 (1 )j jDα χ−  = 0.425 (1 )j jα χ− .

 3. For example, assume we have a two-item instrument with α1 = 2.0, δ1 = 0.0, χ1 = 0.25 
for the first item and α2 = 1.0, δ2 = –0.5, χ2 = 0.0 for the second item. According to 
the 3PL model, a person with the response vector x = 01 will have an   �θ of –0.55. 
However, if we use the 2PL model (i.e., χ1 = χ2 = 0.0), then our   �θ is –0.1558. For the 
Rasch model (i.e., α1 = α2 = 1.0 and χ1 = χ2 = 0.0), our   �θ is approximately –0.25. 
Comparing these   �θs shows that one effect of including a nonzero χj in our model is 
to reduce the   �θs relative to not including χj.

 4. Some users of the Rasch model have argued that the item discrimination parameter 
cannot be estimated as is done with the 2PL and 3PL models (e.g., see Wright, 1977b). 
According to Gustafsson (1980), when one has unequal discriminations, the item 
locations are related to the calibration sample’s characteristics on the latent variable 
(e.g., a high- or low-proficiency group). In fact, he states that “it is difficult to make 
a distinction between the assumption of unidimensionality and the assumption of 
homogeneous item discrimination” (p. 208). Lumsden (1978) expresses a similar 
opinion: “Test scaling methods are self-contradictory if they assert both unidimen-
sionality and different slopes for the ICC. . . . If the unidimensionality requirement 
is met, the Rasch (1960) one-parameter model will be realized” (p. 22). (Lumsden 
also suggested abandoning the two- and three-parameter normal ogives.) Gustafs-
son (1980) suggests that it may be prudent to investigate the robustness of the Rasch 
model in the face of varying item discriminations for specific applications.
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 5. According to Holland (1990a), there can be at most two parameters per item, and 
“models that contain three or more parameters per item can only estimate these 
parameters successfully for one of two reasons; either they are not applied to a large 
enough item set or the test is not unidimensional” (p. 17); also see Cressie and Hol-
land (1983) and Holland (1990b). As such, there appear to be more parameters in 
the 3PL model than can be supported by a unidimensional test.

 6. As is true with the two-parameter model, JMLE no longer seems to be used for 
parameter estimation with the three-parameter model. However, for completeness, 
we describe some of the past research in this area. The Hulin et al. (1982) study of 
JMLE presented in Chapter 5 also examined parameter estimation accuracy for two 
models (2PL, 3PL); this study had the additional factors of sample sizes (200, 500, 
1000, 2000) and instrument length (15, 30, 60 items). They found that for a given 
condition the 2PL model results were better than those for the 3PL. However, for 
both models, and not surprisingly, the larger the sample size and the longer the 
instrument, the more accurate the estimates. In addition, the average error (i.e., root 
mean squared) in recovering the true IRFs for both models and using at least 30 
items was no greater than 0.05 for a sample size of 1000 and less than 0.07 with 500 
cases. In general, increasing the instrument’s length for a given sample size resulted 
in more accurate estimates.

Skaggs and Stevenson (1989) report a similar finding using LOGIST. They also 
found that the average error in recovering the true IRFs for the 15-item instrument 
was about 0.07, and for the 30-item length the average error was slightly below 
0.055 when using a sample size of 500. These average errors decreased to about 
0.05 and about 0.037 for the 15- and 30-item lengths, respectively, when the sample 
was quadrupled to 2000 cases. Lord (1968) suggests that the sample size be greater 
than 1000 and that instruments be at least 50 items long when using LOGIST. How-
ever, Swaminathan and Gifford (1983) found that reasonably good estimates can be 
obtained with a 1000-person sample and a 20-item instrument. Therefore, it appears 
that samples of a 1000 or more with instruments of at least 20 items, and prefer-
ably longer, should be used with JMLE as implemented in LOGIST. However, work 
by Thissen and Wainer (1982) calls this sample size suggestion into question. For 
example, applying their observations to the 3PL model for an item with αj of 1.5, 
δj = 2 (or δj = –2), and χj = 0.1 would require 97,220, 22,142, and 46,743 individu-
als to estimate the item’s δj, αj, and χj, respectively, with an accuracy of one-tenth. 
Therefore, the calibration sample size would be 97,220.

 7. The testlet model is equivalent to a second-order model or a restricted bifactor model 
(Li, Bolt, & Fu, 2006; Rijmen, 2010).

 8. Although the same calibration sample is used for the 1PL, 2PL, and 3PL model cali-
brations, the different models produced different estimates. The mean item location 
estimate for the 1PL, 2PL, and 3PL models are –0.403, –0.400, and 0.036, respec-
tively. Moreover, the mean discrimination estimate of 2.342 for the 3PL model is 
substantially greater than the common   �α = 1.421 found with the 1PL model or the 
2PL model’s mean discrimination estimate of 1.459. This is due to the nonzero lower 
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asymptote as well as to differences in metrics. With respect to the former explana-
tion, we see from a comparison of the 2PL and 3PL models’   �αjs that the 2PL model 
accommodates the nonzero asymptote by decreasing   �α relative to what is obtained 
when we estimate the lower asymptote; for the 2PL model   �α1 is 1.226 and for the 
3PL model   �α1 = 1.921. In fact, for all the items the 2PL model’s   �αjs are less than the 
corresponding 3PL model’s   �αjs. These lower 2PL model   �αjs are associated with a 
metric that, relative to the 3PL model’s   �αjs, is stretched out and located lower than 
that of the 3PL model. In short, we have different metrics for the different model 
calibrations of the data. As such, the differences in the estimates across models for 
corresponding item parameters are partly due to a difference in metrics. Therefore, 
strictly speaking, we need to link the various metrics before directly comparing 
individual item parameter estimates across models.

 9. The screening value of –0.2935 obtained in Appendix G, “Conditional Indepen-
dence using Q3,” can be used for evaluating Q 3

P . As mentioned in Appendix G, the 
generated data are conditionally independent. Theoretically, when the data are con-
ditionally independent, there is no linearity in the residuals to partial out and the 
zero-order correlation Q3 is equivalent to Q 3

P . Because our generated data contain a 
random error component, it is possible that the intercorrelations among one or more 
item pairs will not be equal to zero but will be very close to zero; sample size will 
also affect the equivalence of the partial and zero-order correlations. However, any 
difference from zero will not be meaningful and should not affect our conclusions. 
Consequently, we see that the item pairs identified using the gap approach (i.e., 2–3, 
3–4, and 2–4) are also identified using the screening value.

10. A complementary approach for determining the df for evaluating ΔG2 is to use the 
difference in the model’s dfs. The df for a model is given by 2L – (number of item 
parameters) – 1, where L is the number of items on the instrument and the number 
of item parameters is based on the model and the number of items. For example, 
for the 3PL model there are three item parameters (αj, δj, and χj), and for a, say, five-
item instrument the number of items parameter is 3 × 5 = 15. Therefore, for the 3PL 
model the df = 32 – 15 – 1 = 16. For the 2PL model there are two item parameters (αj 
and δj), and with a five-item instrument the df = 32 – 10 – 1 = 21. With the 1PL model, 
each item has a location (δj) and all items have a common α. Therefore, with a five-
item instrument there are six parameters that are estimated and the  model’s df = 32 
– 6 – 1 = 25. With BILOG, if one uses the keyword RASch, the program performs 
a 1PL estimation and then rescales the common α to be 1 and adjusts all the δjs 
accordingly; how this is done is demonstrated in Chapter 4. Therefore, with BILOG 
there are six, not five, item parameters estimated with the Rasch model. In contrast, 
a program like BIGSTEPS (or WINSTEPS) does not estimate a common α, and, as a 
result, there are only five δjs estimated; that is, the df = 32 – 5 – 1 = 26.

11. From Lord and Novick (1968) we have that the area under the item information 
function is
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With the use of the D scaling constant in the 3PL model, the item information is
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and the corresponding area under the item information function is equal to
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−∫ . 

12. To determine where an item has its maximum information, recall that αj is propor-
tional to the slope of the IRF at δj (i.e., the slope at δj is 0.25αj(1 – χj)). The offset 
from δj to where an item has its maximum information is obtained from the item 
information equation. By substitution into Equation 6.13 and rearranging terms, we 
have
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Following Lord and Novick (1968) and maximizing Ij(θ) with respect to αj(θ – δj)  
leads to
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To find the maximum of this last equation, its derivative is set to 0 and we solve for 
αj(θ – δj)
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Because this equation is equal to 0.0, when its numerator equals zero we only need 
to be concerned with the numerator

 ( ) 2 ( )2 j j j j
j e eα θ δ α θ δχ − −+ −  = 0. 

This last equation is in the form of a quadratic (i.e., f(x) = ax2 + bx + c, where a, b, and 
c are real constants and x = et; therefore, 2c + et + e2t). We can solve this last equation 
by using the quadratic formula

 
2 4

2
b b acx

a
− ± −= , 

with a = –1, b = 1, and c = 2χj. Because in this case, a < 0, we have two solutions: 
1 + 4(2c) > 0 and –1/2(–1) = 0.5. Using the quadratic formula, we obtain by substitut-
ing the values for a, b, and c

 
21 ( 1) 4( 1)(2 ) 1 1 8

2( 1) 2
c cx

− ± − − − − ± += =
− −

. 

The solutions are

 
1 1 8 1 1 8

2 2 2
c cx − + + += = −

−
 and 

1 1 8 1 1 8
2 2 2

c cx − − + += = +
−

 

We can eliminate

 
1 1 8
2 2

c+−  

because it leads to having to take the log of a negative number. Therefore, we have 
( )j jx eα θ δ−=  and ln(x) = αj(θ – δj). By substitution

 
1 1 8ln ( )
2 2 j j
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 ++ = −   

1 1 8ln
2

( )j
j

c

θ δ
α

 + +
 
  = −  

The item has the location of its maximum information at

 

1 1 8
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2
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j
j

χ

δ
α
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   +  

and the offset is
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That is, an item provides its maximum information at a location slightly higher than 
its δj. When χj = 0, the offset equals 0.

13. The standard error for the person location estimate under the 3PL is
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j j j j j
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p p
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θ
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∑  (6.21)

where pj is conditional on   �θi.

14. As mentioned in Chapter 5, the maximum information attainable by any scoring 
method is given by the total information function. Therefore, the optimal scoring 
weight for an item j is given by Equation 5.20

 ( )
(1 )

j
j

j j

p
w

p p
θ

′
=

−  

Given that the first derivative for the 3PL model is
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j j j j

j
j

p p
p

α χ
χ

− −
′ =

−
 (6.22)

we have by substitution of Equation 6.22 into Equation 5.20 that the optimal scor-
ing weight for the 3PL model is (Lord, 1980)

 ( )

( )
( )

(1 ) 1 j j

j j j j
j

j j j

p
w

p e α θ δ

α χ α
θ

χ χ − −

−
= =

− +
. (6.23)

Therefore, the optimal weight is a function of not only the item parameters, but also 
the person’s location. As a result, with the 3PL model it is not possible to know the 
optimal scoring weight for an individual. Equation 6.23 shows that when χj = 0, 
then wj(θ) = αj. Similarly, whenever θ is very large (i.e., θ → ∞), then the item’s opti-
mal weight approaches its discrimination (i.e., wj(θ) → αj). In contrast, whenever 
θ is very small (i.e., θ → –∞), then pj → χj and wj(θ) → 0. In this latter condition, 
the respondent’s location makes the item ineffective. With the scaling constant, D, 
Equation 6.23 becomes

 ( )( )
1 j j

j
j D

j

D
w

e α θ δ

α
θ

χ − −=
+  

15. Equations 6.16–6.18 and the following equations are for maximum likelihood esti-
mation. In addition to the information for each item parameter, we have information 
for the interrelationships among αj, δj, and χj. Following Lord (1980) we have
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and
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Collectively, Equations 6.16–6.18 and 6.24–6.26 form the information matrix (Ij) for
item j

Ij = 
Eq. 6.16
Eq. 6.24 Eq. 6.17
Eq. 6.25 Eq. 6.26 Eq. 6.18

 
 
 
  

. (6.27)

The reciprocals of the square root of the main diagonal elements are the estimates of 
the standard errors of αj, δj, and χj. On the normal metric, the corresponding item 
parameter information formulas are (Lord, 1980)
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16. For completeness, the information functions for estimating αj for all five items are
shown in Figure 6.18. As can be seen, the bimodal pattern exhibited in Figure 6.14
is true for all items. The different modal values reflect the magnitude of the nonzero
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χjs. It is also apparent that the modes occur on opposite sides of the item’s location, 
with the leftmost mode always less than the rightmost mode. This characteristic is 
a reflection of positive αjs (i.e., if the αjs are negative, then the leftmost mode would 
be greater than the rightmost mode). The location of the minimum of the informa-
tion function between the two modes corresponds to the item’s δj; this minimum 
information is 0.

17. Typically, the TCC is depicted as ogival shaped and as resembling an IRF. However, 
the TCC’s shape is a function of not only the number of items, but also the cali-
bration model and the distribution/characteristics of the item parameter estimates. 
For example, if our   �δjs are more widely spaced than those used in Figure 6.17, the 
TCC’s shape would change. Figure 6.19 contains the TCC for a five-item set that 
uses the same   �αjs and   �χjs as in Figure 6.17, but with   �δ1 = –3.0,   �δ2 = –2,   �δ3 = 0.0,   �δ4 
= 2, and   �δ5 = 3.0. Clearly, this TCC is still monotonically nondecreasing, but it also 
contains ridges. (One needs to extend the abscissa to see that the TCC is asymptotic 
with jχ∑ .)

18. Based on the work of Yen (1981), it appears that whenever one applies an inap-
propriate model to a data set, one may obtain sample-dependent estimates (i.e., a 
contradiction to one of IRT’s potential advantages). Therefore, adopting a model that 
expresses one’s intentions and does not simply describe the data appears to be a pru-
dent strategy. From a philosophical perspective, because all models are false, then 
this begs the question as to whether one may obtain sample-independent estimates 

FIGURE 6.18. Information for estimating αj as a function of θ for each of the five math items.
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in any truly absolute fashion. It is conjectured that, most likely, the best that one 
may be able to achieve is sample-independent estimates for a particular range of data 
(as demonstrated in Chapter 3). If these data represent the situations in which one 
is primarily interested, then whether one may obtain sample independent estimates 
in an absolute fashion may be academic.

FIGURE 6.19. TCC for widely spaced δs.

236 The Theory and PracTice of iTeM resPonse Theory 

 
 

Copyright © 2022 The Guilford Press. 
No part of this text may be reproduced, translated, stored in a retrieval 
system, or transmitted in any form or by any means, electronic, mechanical, 
photocopying, microfilming, recording, or otherwise, without written permission 
from the publisher. 
Purchase this book now: www.guilford.com/p/deayala 

 
 
 
 
 
 
 

Guilford   Publications 
370  Seventh  Avenue 
New   York, NY    10001 

           212-431-9800 
                    800-365-7006 
          www.guilford.com 

 
 
 
 
 
 

https://www.guilford.com/
https://www.guilford.com/books/The-Theory-and-Practice-of-Item-Response-Theory/R-de-Ayala/9781462547753



