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Orthogonal, Planned and

Unplanned Comparisons

8.1 Introduction

In this chapter we discuss in greater detail the nature of a comparison.1

In the sections that follow, we will assume equal sample sizes to make the
description simpler. That is, we have k means with an equal number of
observations for each treatment. Later, we will generalize the discussion to
cases where there are a different number of observations across conditions.

Table 8.1 repeats the analysis of variance summary table from the pre-
ceding chapter, where we had k = 4 treatments with n = 10 observations for
each treatment. Although in that example the omnibus F = MST /MSW =
9.15 was statistically significant, significance is not a necessary condition
for testing orthogonal, planned comparisons. Comparisons can be tested di-
rectly without conducting the omnibus test. Indeed, a fledgling view among
methodologists is that omnibus tests should be avoided because they do not
provide information about specific patterns between treatment means. Com-

1Comparisons are also referred to as contrasts.
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Table 8.1: Summary of the analysis of variance of a between-subjects
design with k = 4 treatments and n = 10 participants randomly assigned
to each treatment.

Source of variation Sum of squares df Mean square F

Treatments 83.50 3 27.83 9.15
Within treatments 109.44 36 3.04

Total 192.94 39

parisons provide one way to test specific research questions and hypotheses
among a set of treatment means, so comparisons extend the omnibus test
on treatment means presented in Chapter 6.

8.2 Comparisons on Treatment Means

A comparison involves quantifying a particular research question by taking a
linear combination of treatment means. For instance, a researcher might be
interested in comparing three treatments where clients received therapies to
a fourth condition where clients were given a placebo therapy. This question
can be worded as “Does the average of the three treatments that received
therapy differ from the single group that did not receive therapy?” Table 8.2
shows three of the many comparisons that might be made on a set of k = 4
treatment means. The values of each comparison are called coefficients
of the treatment means, and we will use a with appropriate subscripts, as
shown on the right-hand side of the table, to represent coefficients. The first
subscript refers to a particular treatment mean and the second subscript
corresponds to a particular comparison, or research question. In this way
we can tailor comparisons to specific research questions targeted to specific
patterns of means.

The first comparison in Table 8.2 involves the difference between Treat-
ment 1 and Treatment 2. This comparison corresponds to the research ques-
tion “Is the mean for Treatment 1 statistically different from the mean for
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Table 8.2: Three comparisons on k = 4 treatment means.

Coefficients Notation Value

Comp. X̄1. X̄2. X̄3. X̄4. X̄1. X̄2. X̄3. X̄4.

∑k

j=1
a2

ji

d1 1 −1 0 0 a11 a21 a31 a41 2
d2 0 0 −1 1 a12 a22 a32 a42 2
d3 1/2 1/2 −1/2 −1/2 a13 a23 a33 a43 1

Treatment 2?” Treatments 1 and 2 receive coefficients of 1 and −1, respec-
tively, but Treatments 3 and 4 are assigned coefficients of 0 because those
two means are irrelevant to this particular research question. Multiplying
the treatment means by the coefficients in the first row, we obtain the com-
parison

d1 = (1)X̄1. + (−1)X̄2. + (0)X̄3. + (0)X̄4.

= X̄1. − X̄2.

The coefficients equal to zero eliminate the treatments that are not involved
in that particular comparison. Note how the comparison yields a simple
difference between the two means in question.

The second comparison in Table 8.2 involves the difference between the
means of Treatment 3 and Treatment 4 because the coefficients are 0, 0, −1,
1. Multiplying the treatment means by the coefficients in the second row,
we obtain the comparison

d2 = (0)X̄1. + (0)X̄2. + (−1)X̄3. + (1)X̄4.

= X̄4. − X̄3.

The third comparison in Table 8.2 involves a more complicated research
question: Is the average of Treatments 1 and 2 statistically different from
the average of Treatments 3 and 4? If we multiply the treatment means by
the coefficients in the last row, we have the comparison
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d3 = 1
2

(
X̄1. + X̄2.

)
− 1

2

(
X̄3. + X̄4.

)
or the difference between the average of the means for Treatments 1 and 2 and
the average of the means for Treatments 3 and 4. The first two comparisons
are pairwise comparisons, but the third is not. Thus, comparisons need
not be limited to pairwise tests, and so the material in the present chapter
generalizes the pairwise tests in Chapter 7. Many types of research questions
can be converted into comparisons and tested in a very simple way.

Comparisons of the kind shown in Table 8.2 are linear functions of the
treatment means. Any linear function of the treatment means such as

di = a1iX̄1. + a2iX̄2. + · · · + akiX̄k.

is called a comparison, if at least two of the coefficients are not equal to
zero and if the sum of the coefficients is equal to zero, that is, if

k∑
j=1

aji = 0 (8.1)

For Equation 8.1 to be true under the conditions stated, then it is obvious
that for the sum of the coefficients to be 0 at least one of the coefficients
must be negative and at least one must be positive.

Under the standard null hypothesis of the omnibus analysis of variance,
all of the k treatment means have the same expected value μ. Then because
the coefficients have the property that

∑k
j=1 aji = 0 for any comparison

di, under the null hypothesis the expected value of di (the weighted sum
of means where the values of the comparisons are the weights) will also be
equal to zero. For example, if the comparison is (3, −1, −1, −1) so that on
four treatment means we have

di = 3X̄1i −
(
X̄2i + X̄3i + X̄4i

)
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then under the null hypothesis the population value of di is 0.
This is a more general null hypothesis than the usual “population treat-

ment means are equal” because the individual treatment means need not
have identical population means in order for a weighted sum to be 0 under
the null hypothesis. That is, the requirement under the null hypothesis for
the comparison (3, −1, −1, −1) is

3μ1 − (μ2 + μ3 + μ4) = 0

There are many combinations of those four means that could result in a
weighted sum of 0.

The data analyst can convert just about any research question about
means into a comparison over those means. Thus, comparisons offer a direct
way to test research questions. We now turn to describing how to perform
statistical tests on comparisons and then return to the problem of how to
convert a research idea into a comparison. We will also discuss constraints
that are imposed on the number and types of comparisons one can make.

8.3 Standard Error of a Comparison

The estimated standard error of any comparison di, that is, the standard
error of the corresponding weighted sum obtained by multiplying the means
by the coefficients for the comparison, will be given by

sdi
=

√√√√MSW

(
a2

1i

n1
+

a2
2i

n2
+ · · · + a2

ki

nk

)
(8.2)

where MSW is the mean square within treatments from the analysis of vari-
ance. Recall that MSW is estimated as a pooled variance, so the homo-
geneity of variance assumption is applicable here as well. If the number of
observations is the same for each mean, then Equation 8.2 may be written
more succinctly as
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sdi
=

√√√√√MSW

n

k∑
j=1

a2
ji (8.3)

where n is the number of observations for a single mean. We note the
special case that for any comparison between two means X̄l. and X̄m. the
corresponding coefficients will be 1 and −1, and

∑k
j=1 a2

ji = 2. Then Equa-

tion 8.3 reduces to
√

2MSW
n , which is similar to the usual standard error of

the difference between two means when n1 = n2 = n. The difference however
is in the computation of the MSW term. When there are more than two
treatment groups, all groups enter into the computation of the MSW term,
even though some treatment groups are weighted 0. This is justified under
the equality of variance assumption. When the equality of variance assump-
tion holds, then the pooled error term leads to a more powerful statistical
test.

8.4 The t Test of Significance for a Comparison

Under the null hypothesis for the comparison, we have the population value
of d equal to 0. Then, the statistical significance of the difference represented
by any comparison di can be evaluated by finding the t value

t =
di

sdi

(8.4)

The degrees of freedom for this t value is equal to the number of degrees of
freedom associated with the mean square within treatments from the analysis
of variance (that is, the denominator of the omnibus F test). This computed
t value is compared to the critical value found in Table B.1 in Appendix B.

In Table 8.3, we give the means for the treatments of the analysis of
variance reported in Table 8.1 and the coefficients for the three comparisons
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Table 8.3: Application of the comparisons of Table 8.2. The means are
those obtained in the experiment summarized in the source table shown in
Table 8.1.

X̄1. X̄2. X̄3. X̄4.

Comparison 17.2 19.4 15.8 19.0 Value of di

d1 1 −1 0 0 −2.2
d2 0 0 −1 1 3.2
d3 1/2 1/2 −1/2 −1/2 0.9

of Table 8.2. Multiplying the means by the corresponding coefficients for
each comparison, we obtain d1 = −2.2, d2 = 3.2, and d3 = 0.9.

Summing the squares of the coefficients for each comparison, we have

k∑
j=1

a2
j1 = 2

k∑
j=1

a2
j2 = 2

k∑
j=1

a2
j3 = 1

From the analysis of variance in Table 8.1, the pooled error term is
MSW = 3.04. The standard errors given by Equation 8.3 for each of the
three comparisons are as follows:

sd1 =
√

3.04
10 (2) = 0.78

sd2 =
√

3.04
10 (2) = 0.78

sd3 =
√

3.04
10 (1) = 0.55

Dividing each di by its standard error, we obtain the corresponding t tests

t1 = −2.2
0.78 = −2.82

t2 = 3.2
0.78 = 4.10

t3 = 0.9
0.55 = 1.64

Each of these t ’s has 36 degrees of freedom, the number of degrees of freedom
associated with the MSW from the analysis of variance. If we use a two-
sided α = 0.05 with a t critical of 2.028, the first two comparisons d1 and d2

are statistically significant, whereas the third d3 is not.



218 DATA ANALYSIS FOR EXPERIMENTAL DESIGN

Confidence limits for di may be established in the usual way as di ± tsdi
,

where the t used in the confidence interval formula is the t from the Table
for a two-tailed test at the desired interval. For a 95% confidence interval
the two-tailed t-value corresponds to the tabled value for α = 0.05 with
degrees of freedom corresponding to the MSW term. For each of the three
comparisons in the example we have

−2.2 ± (2.028)(0.78)
3.2 ± (2.028)(0.78)
0.9 ± (2.028)(0.55)

The lower and upper 95% confidence limits are, respectively, (−3.78, −0.62),
(1.62, 4.78), and (−0.22, 2.02). Confidence intervals that do not include
zero, the typical value of the null hypothesis, correspond to rejecting the
null hypothesis in the context of a statistical test.

8.5 Orthogonal Comparisons

We now define the useful concept of orthogonality. If we make two compar-
isons di and dj on the same set of k treatment means where all treatments
have the same sample size, then di and dj are said to be orthogonal if the
sum of the products of the corresponding coefficients for the two compar-
isons is equal to zero. That is, two comparisons are orthogonal when the
weights satisfy this equation

k∑
t=1

atiatj = a1ia1j + a2ia2j + · · · + akiakj = 0

The comparisons shown in Table 8.2 are mutually orthogonal be-
cause the sum of the products of the coefficients for all possible pairs of
comparisons are equal to zero. For example, for comparisons d1 and d2, we
have
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(1) (0) + (−1) (0) + (0) (−1) + (0) (1) = 0

The sum of the products of the coefficients for comparisons d1 and d3, and,
also for comparisons d2 and d3, totals zero. As we will see below, orthogo-
nality permits an interesting connection between a set of comparisons and
the sum of squares for treatment in the analysis of variance.

When sample sizes are unequal, then orthogonality between two com-
parisons should be defined as follows:

∑ atiatj

nt
=

a1ia1j

n1
+

a2ia2j

n2
+ · · · +

akiakj

nk
= 0

Orthogonality can be given a geometric interpretation. Consider the
two comparisons (1, 1) and (1, −1). If we plot these two points as vectors
(an arrow from the origin to the point), we can see that the two compar-
isons are at 90 degrees to each other, as shown in Figure 8.1. These two
comparisons are orthogonal because (1)(1) + (1)(−1) = 0. Indeed, orthog-
onality refers to comparisons that are at right angles when represented as
vectors. When there are more than three treatments, the geometric picture
is difficult to draw or see because we have trouble seeing in more than three
spatial dimensions; but the concept of right angles extends to any number
of treatments.

8.6 Choosing a Set of Orthogonal Comparisons

Orthogonality is a useful constraint on possible comparisons, but there are
many sets of orthogonal comparisons that are possible. For example, with
k = 4 means, the three sets of orthogonal comparisons given in Table 8.4
differ from one another and also from the set of orthogonal comparisons
given in Table 8.2. Each of the three sets of comparisons given in Table 8.4
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Figure 8.1: Geometric interpretation of orthogonality—the comparisons
(1, 1) and (1, −1).

−1 1

1

−1

(1, 1)

(1, −1)

is orthogonal within the set, which can easily be verified by calculating the
sum of the products of the corresponding coefficients for each possible pair
of comparisons within each set. In each case, the sum of these products is
equal to zero.

Because more than one set of orthogonal comparisons is possible for
a given group of k ≥ 3 means, the particular set of comparisons used in a
study depends on the researcher’s interests and should be planned at the
same time the study is planned. Consider the particular three orthogonal
comparisons shown in Table 8.2. Suppose the dependent variable of interest
was a measure of maze performance and the four treatments were:

Group 1: a treatment tested after 12 hours of water deprivation
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Table 8.4: Three different sets of orthogonal comparisons on k = 4 treat-
ment means.

X̄1. X̄2. X̄3. X̄4.

Set 1 Coefficients

d1 −3 1 1 1
d2 0 −2 1 1
d3 0 0 1 −1

Set 2 Coefficients

d1 1 1 −1 −1
d2 −1 1 −1 1
d3 −1 1 1 −1

Set 3 Coefficients

d1 −3 −1 1 3
d2 1 −1 −1 1
d3 −1 3 −3 1

Group 2: a treatment tested after 24 hours of water deprivation

Group 3: a treatment tested after 12 hours of food deprivation

Group 4: a treatment tested after 24 hours of food deprivation

In this design the first comparison in Table 8.2 tests for the difference
between the 12- and 24-hour water-deprived treatments; the second com-
parison tests for the difference between the 12- and 24-hour food-deprived
treatments; and the third comparison tests for the difference between the av-
erage performance of the water-deprived and the food-deprived treatments.
This third comparison tests whether the means of the water deprivation
groups differ from the means of the food deprivation groups, ignoring the
specific time interval of the deprivation (that is, 12 or 24 hours). We will
return to examples such as these when we discuss factorial analysis of vari-
ance. These types of comparisons are given special names such as main effect
comparison, or interaction comparison, or special main effect comparison, as
we will see in later chapters.

We do not need to make all of the possible k−1 orthogonal comparisons
in a given set. In some cases, the experimenter may only be interested
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in a few of the possible comparisons. Again, it is not necessary that the
omnibus F = MST /MSW be statistically significant (or even tested, for
that matter) prior to testing planned orthogonal comparisons. Researchers
may test individual comparisons without testing the omnibus F test.

8.7 Protection Levels with Orthogonal
Comparisons

If k−1 orthogonal comparisons are made on a set of k treatment means, the
numerators of the t ratios will be independent due to orthogonality of the
comparison. The t ratios themselves will not be independent because the
tests of significance are all made by using a common denominator MSW .
However, if α is small, say 0.05 or 0.01 for a single test, and if k is not large,
then the protection level, (1−α)k−1, based on the assumption that the k tests
are independent, will be approximately equal to the lower-bound protection
level, 1 − (k − 1)α, based on the Bonferroni inequality. For example, with
α = 0.01 for a single test and with k = 16, we have (1− 0.01)16−1 = 0.86 as
the protection level for a set of 15 independent tests. With the Bonferroni
inequality, we have 1 − (16 − 1)0.01 = 0.85 as the lower-bound estimate of
the protection level. For other values of α or k, the approximation may not
work as well. Thus, for all practical purposes, the set of k − 1 orthogonal
comparisons can be regarded as independent in evaluating the protection
level and P (E).

8.8 Treatments as Values of an Ordered Variable

In some studies the treatments may consist of different values of an ordered
variable. For example, we might test different treatments after 0, 6, 12, and
18 hours of food or water deprivation. In other cases, the treatments may
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consist of increasing intensities of shock, of increasing amounts of reward, of
decreasing numbers of reinforcements, or of decreasing dosages of a drug.

If the treatments consist of different values of an ordered variable and
the differences between the values are equal, then we may be interested in
determining whether the treatment means are functionally related to the
values of the treatment variable. We may, for example, be interested in
testing whether the treatment means are linearly related to the values of
the treatment variable or whether the treatment means deviate significantly
from a linear relation (that is, deviate from a straight-line relation). If the
deviations from linearity are statistically significant, then we may wish to
determine whether there is a significant curvature in the trend of the means.

Assume, for example, that the treatments in an experiment consist of
four equally increasing levels of reward, which we designate by 1, 2, 3, and
4. With n = 10 participants assigned to each treatment, assume that the
analysis of variance for the experiment is as given in Table 8.1. The ordered
treatment means, 15.8, 17.2, 19.0, and 19.4, represent the average perfor-
mance on a game of skill at each of the four successive reinforcement levels.
Figure 8.2 plots the treatment means against the levels of reinforcement. By
visual inspection it appears that the trend of the means is approximately lin-
ear. We will next develop a statistical test to assess linearity and deviations
from linearity.

8.9 Coefficients for Orthogonal Polynomials

To determine whether the linear component of the trend of the means is
statistically significant and also whether the treatment means deviate signif-
icantly from linearity, we make use of a table of coefficients for orthogonal
polynomials, Table B.5.2 This table gives the coefficients to use for the lin-
ear, quadratic, and cubic components of the treatment sum of squares. The

2The coefficients for orthogonal polynomials given in Table B.5 are for the case of equal
intervals in the values of the quantitative variable and for equal n’s. If the intervals or n’s
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Figure 8.2: Treatment means for each of four levels of reinforcement.
Error bars depict plus/minus 1 standard error where the standard error
is based on the pooled MSW , so the bars are identical across the four
conditions.
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coefficients in each row of Table B.5 sum to zero, and for any fixed value
of k the sum of the products of the coefficients for the linear and quadratic
comparisons is also zero. This result is true also for the linear and cubic co-
efficients and for the quadratic and cubic coefficients. The linear, quadratic,
and cubic comparisons, therefore, meet the requirements for mutual orthog-
onality discussed earlier. The coefficients for the linear, quadratic, and cubic
components for k = 4 treatments are shown in Table 8.5.

As another example, if k = 5, the successive sets of coefficients would
correspond to the linear, quadratic, cubic, and quartic components of the

are unequal, the coefficients given in Table B.5 should not be used. For procedures to be
used with unequal intervals and/or unequal n’s, see Grandage (1958) or Gaito (1965).
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Table 8.5: Coefficients for the linear, quadratic, and cubic components
for k = 4 treatments.

Treatment means
Comparison 15.8 17.2 19.0 19.4

Linear −3 −1 1 3
Quadratic 1 −1 −1 1
Cubic −1 3 −3 1

treatment sum of squares. Successive application of these coefficients would
enable one to determine how well the trend of the treatment means is repre-
sented by a polynomial of the first, second, third, and fourth degree, respec-
tively. Table B.5 in Appendix B gives only the coefficients for the linear,
quadratic, and cubic components because seldom will the comparisons in-
volving polynomials of degree greater than 3 be of interest. Coefficients
for the higher-degree polynomials can be found in Fisher and Yates (1948)
tables.

A graphical display of these polynomial comparisons may help illus-
trate the patterns they test. The coefficients for the linear component or
comparison change signs only once, from minus to plus. These coefficients
for k = 4 treatments are plotted in Figure 8.3(a), and the trend represented
by the coefficients is a straight line. For the quadratic comparison, the co-
efficients change signs twice, from plus to minus to plus, and, as plotted in
Figure 8.3(b), correspond to one reversal in the trend such as a U-shaped
pattern. For the cubic coefficients, there are three sign changes in the coeffi-
cients, from minus to plus to minus to plus, and, as shown in Figure 8.3(c),
these coefficients correspond to two reversals in the trend such as in an
S-shaped, or Z-shaped, pattern. Thus, the number of sign changes in the
coefficients indicates the degree of the polynomial.
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Figure 8.3: Plots of linear (a), quadratic (b), and cubic (c) coefficients
for orthogonal polynomials against equally spaced values of a quantita-
tive variable. These plots show the characteristic pattern of each term in
the polynomial: the linear checks for trends that do not have bends, the
quadratic checks for trends with one bend, and the cubic checks for trends
with two bends.
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8.10 Tests of Significance for Trend Comparisons

The test of statistical significance uses the same equation for comparisons
presented earlier in this chapter. Multiplying the treatment means by the
coefficients for the linear comparison, as given in Table 8.5, we have for this
comparison

L = (−3) (15.8) + (−1) (17.2) + (1) (19.0) + (3) (19.4) = 12.6

Then, with
∑k

j=1 a2
jL = 20, n = 10 observations for each treatment and

MSW = 3.04, we use Equation 8.4 to find the t value
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tL =
12.6√
203.04

10

= 5.11

This observed t is compared to the critical t value from Table B.1 in Ap-
pendix B, based on 36 degrees of freedom (that is, the degrees of freedom
associated with MSW ). The test confirms the visual inspection of Figure 8.2
that the four treatment means have a linear trend. The test rejects the null
hypothesis that the slope of the line is zero (that is, rejects a horizontal line)
because the observed t exceeds the tcritical = 2.028.

Similarly, the t test for the quadratic term has a numerator of

Q = (1)(15.8) + (−1)(17.2) + (−1)(19.0) + (1)(19.4) = −1

and a denominator of √
4
3.04
10

= 1.1027

because there are 10 participants per treatment, MSW = 3.04, and
∑k

j=1 a2
ji

= 4. The resulting t ratio is

−1
1.1027

= −0.91

which in absolute value terms does not exceed tcritical. This failure to reject
the null hypothesis for the quadratic comparison suggests there is little evi-
dence in these data for a quadratic trend, at least up to the statistical power
afforded by the present sample size.

Finally, the comparison corresponding to the cubic trend on the treat-
ment means is

C = (−1)(15.8) + (3)(17.2) + (−3)(19.0) + (1)(19.4) = −1.8
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with a resulting test statistic of

−1.8√
203.04

10

= −.73

The cubic trend is not statistically significant because the absolute value of
the observed t of −.73 is not more extreme than the tcritical = 2.028. Thus,
in this experiment the linear trend comparison is statistically significant with
α = 0.05, but the quadratic and cubic comparisons are not.

8.11 The Relation between a Set of Orthogonal
Comparisons and the Treatment
Sum of Squares

A set of orthogonal comparisons decomposes the sum of squares for treat-
ments into smaller parts, each part representing the portion of sum of squares
treatment attributable to that comparison. We illustrate this idea with the
three orthogonal trend comparisons performed in the preceding section, but
this idea will hold for any complete set of k − 1 orthogonal comparisons.

Recall that a complete set of orthogonal comparisons must involve k−1
comparisons, where k is the number of treatments and each pair of compar-
isons are orthogonal. The sum of squares for a single comparison i is defined
as

SSi =
d2

i∑ a2

ni

Thus, for the linear, quadratic, and cubic comparisons in the preceding
section we have

SSL = 12.62

20 10 = 79.38

SSQ = (−1)2

4 10 = 2.5

SSC = (−1.8)2

20 10 = 1.62
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Figure 8.4: Pie chart depicting the decomposition of sums of squares into
treatments and within treatments, as well as the further decomposition of
the sum of square treatments into orthogonal comparisons. The shaded re-
gions together correspond to the entire treatment sum of squares (83.50),
which is decomposed into separate portions by the particular orthogonal set
of comparisons (in this example, the decomposition is based on the polyno-
mial comparisons and their respective sum of squares SSlinear, SSquadratic,
and SScubic).

Within Treatments SS = 109.94

All Treatments SS = 83.50

Linear SS=79.38
Cubic SS=1.62
Quadratic SS=2.5

We now illustrate the decomposition of treatment sum of squares: the
sum of the three sum of squares for each comparison (79.38 + 2.5 + 1.62)
equals the treatment sum of squares from the analysis of variance, or 83.50,
shown in Table 8.1. This is depicted graphically in Figure 8.4. Thus, a set
of orthogonal comparisons decomposes the omnibus question into smaller
chunks that test specific patterns in the treatment means.



230 DATA ANALYSIS FOR EXPERIMENTAL DESIGN

8.12 Tests of Significance for Planned
Comparisons

Planned comparisons provide information that is relevant to the interpreta-
tion of the outcome of a well-designed study. They are usually limited in
number and planned prior to the examination of the data obtained in the
experiment. In almost all cases, the comparisons will be based on theoret-
ical or practical considerations of importance. In the drug experiment, for
example, determining whether the combination of drugs A and B is or is not
more effective than either drug A or drug B alone would be of practical, if
not theoretical, importance. The comparison of the difference between the
mean of drug A and the mean of drug B would also be of interest.

In testing planned orthogonal comparisons, one sets the protection level
by the number of degrees of freedom associated with the MST (that is,
k − 1). From an experimental point of view, it is difficult to perceive any
great difference between testing k − 1 planned orthogonal comparisons on
the one hand and k − 1 planned comparisons, not all of which are necessar-
ily orthogonal, on the other hand. If the number of planned comparisons
to be tested exceeds k − 1, then some experimenters may also consider it
reasonable to perform these tests in the same manner in which they would
perform planned orthogonal tests. Other experimenters may be more con-
cerned about Type I errors and decide to use a more conservative test, such as
the Bonferroni test, for planned but not necessarily orthogonal comparisons
when the number of such comparisons is greater than k− 1. Recall that the
Bonferroni procedure involves changing the criteria of the individual tests
so that the overall Type I error remains at the desired level, say α = 0.05.
If one performs c comparisons, then each comparison can be tested using a
criterion of 0.05/c. Keep in mind that if the comparisons are not orthogonal,
the Bonferroni procedure provides an upper-bound approximation.

Our suggestion is that if the experimenter is concerned about the Type
I error rate, then he or she should replicate the study. Replication is a better
way of dealing with concerns over Type I error rates than tinkering with the
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α criterion level. But when replication is costly or not feasible (for example,
when conducting a 30-year longitudinal study), then the Bonferroni correc-
tion provides one way to alleviate concerns about Type I errors that emerge
when performing multiple tests. For a discussion of issues surrounding repli-
cation see Greenwald, Gonzalez, Harris, and Guthrie (1996).

8.13 Effect Size for Comparisons

In this section we present a measure of effect size for a specific comparison.
The definitional formula is given by

r =

√
SSC

SSC + SSW
(8.5)

where SSC refers to the sum of squares for comparison (as given in Sec-
tion 8.11) and SSW refers to the sum of squares within treatments. For
example, in Section 8.11 we presented the linear trend comparison, which
had a sum of squares equal to 79.38. Recall that the sum of squares within
treatments for this example was equal to 109.44. Thus, the effect size r for
the linear comparison is equal to

0.648 =

√
79.38

79.38 + 109.44

The definition of effect size presented here compares the sum of squares of
the specific comparison to the sum of squares within treatments. A more
convenient and equivalent version of Equation 8.5 is

r =

√
t2

t2 + df
(8.6)

where the t corresponds to the observed t of the comparison and df corre-
sponds to the degrees of freedom associated with the within-treatment MSW
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term. Both Equations 8.5 and 8.6 yield identical results. Equation 8.6 is
more versatile because it can be applied readily to computer output and to
published papers. Applying Equation 8.6 to the linear comparison example,
we verify that it yields the same answer as Equation 8.5; that is, t = 5.11
and df = 36, thus

0.648 =

√
5.112

5.112 + 36

8.14 The Equality of Variance Assumption

In this chapter we reviewed the topic of comparisons under the assumption of
equal variances. The homogeneity of variance assumption should be checked
whenever comparisons are tested. Fortunately, there is a generalization of
the Welch t test presented in an earlier chapter that permits testing of com-
parisons even when the pooling assumption may not be justified (Brown &
Forsythe, 1974). The logic is the same as for the Welch t test—the degrees of
freedom are adjusted to take into account the discrepancy in the treatment
variances. This more general test of a comparison is now implemented in
many statistical packages, usually under the label “separate variance” test
to indicate that the variances are not pooled.

8.15 Unequal Sample Size

Unequal sample sizes are not a problem for the comparison test presented in
this chapter (though an ANOVA purist would be careful to define orthog-
onality to take into account differences in sample size). The computation
of the standard error uses Equation 8.2 to take into account the different
sample sizes. Unequal sample sizes will become an issue when we discuss
factorial designs, and we will return to this issue in a later chapter.
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8.16 Unplanned Comparisons

We describe a procedure developed by Scheffé (1953) that can be used to
test the significance of any and all comparisons on a set of k means, in-
cluding comparisons that may be suggested after observing the treatment
means themselves. In other words, we do not need to plan the comparisons
in advance, nor do the comparisons need to be limited in number, nor do the
comparisons need to be orthogonal. The Scheffé test provides such flexibility
because of a very clever idea that Scheffé formalized. Scheffé’s test can, of
course, be used for testing planned or orthogonal comparisons as well as pair-
wise comparisons of the kind described in the preceding chapter. The test
will be more conservative than the procedures described for testing planned
or orthogonal comparisons; that is, larger observed differences from the null
hypothesis will be required for statistical significance by the Scheffé criterion,
so one may not want to use the Scheffé test in all settings. For example, if
the investigator only wants to test all possible pairwise comparisons, then
the Tukey test is sufficient.

We emphasize, however, that if the omnibus F = MST/MSW is not
statistically significant at a given α criterion, then no comparison will be
judged significant by the Scheffé test at the same α criterion. It is useless,
in other words, to apply the Scheffé test to comparisons when the omnibus
test is not significant. The rationale for this assertion will be explained in
more detail later in the chapter. On the other hand, if F = MST /MSW is
significant with, say, α = 0.05, then there will be at least one comparison on
the treatment means that will also be statistically significant by the Scheffé
criterion. There may, of course, be more than one statistically significant
comparison.

8.16.1 Some Examples of the Scheffé Test

Table 8.6 shows some of the many possible comparisons that could be made
on a set of k = 4 treatment means. The first 6 comparisons are pairwise
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comparisons; the next 12 comparisons are between one mean and the average
of two other means; the next 3 comparisons are between the average of two
means and the average of two other means; and the last 4 comparisons are
between one mean and the average of the other three means. Since there
are at most k− 1 = 3 orthogonal comparisons possible, Table 8.6 has a high
degree of redundancy across the 25 comparisons that are shown.

The comparisons shown in Table 8.6 do not exhaust all the possibili-
ties. For example, the table does not show the linear, quadratic, and cubic
comparisons that could be performed on k = 4 treatment means. Nor does
the table show comparisons of the kind

2 1 −3 0

or

2 7 −6 −3

of which there are an unlimited number.
We do not recommend that experimenters perform many comparisons

simply because it is possible. Rather, we are pointing out that the Scheffé
test gives the researcher the opportunity to test as many comparisons as
he or she wants. The price paid, however, is a very conservative criterion
for statistical significance. Further, there may be problems in interpretation
when there are many comparison tests. Some of those comparisons will be
redundant (that is, nonorthogonal); thus two comparisons may turn out to
be significant because they overlap in how they weight the treatment means.
For instance, these two comparisons on four treatment means overlap on the
first two treatments: (1, −1, 0, 0) and (1, −1, 1, −1). If the four means are
(6, 2, 3, 3), then both comparisons will be significant because they pick up
the 6 versus 2 difference in the first two treatment means. The Scheffé test
merely controls the Type I error rate; it does not identify which contrasts
represent meaningful research questions—that task is left to the researcher.
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Table 8.6: Some possible comparisons on k = 4 treatment means.

X̄1. X̄2. X̄3. X̄4.

Comparison 17.2 19.4 15.8 19.0
∑

a2 d

1 vs. 2 1 −1 0 0 2 −2.2
1 vs. 3 1 0 −1 0 2 1.4
1 vs. 4 1 0 0 −1 2 −1.8
2 vs. 3 0 1 −1 0 2 3.6
2 vs. 4 0 1 0 −1 2 0.4
3 vs. 4 0 0 1 −1 2 −3.2

1 vs. 2 + 3 2 −1 −1 0 6 −0.8
1 vs. 2 + 4 2 −1 0 −1 6 −4.0
1 vs. 3 + 4 2 0 −1 −1 6 −0.4
2 vs. 1 + 3 −1 2 −1 0 6 5.8
2 vs. 1 + 4 −1 2 0 −1 6 2.6
2 vs. 3 + 4 0 2 −1 −1 6 4.0
3 vs. 1 + 2 −1 −1 2 0 6 −5.0
3 vs. 1 + 4 −1 0 2 −1 6 −4.6
3 vs. 2 + 4 0 −1 2 −1 6 −6.8
4 vs. 1 + 2 −1 −1 0 2 6 1.4
4 vs. 1 + 3 −1 0 −1 2 6 5.0
4 vs. 2 + 3 0 −1 −1 2 6 2.8

1 + 2 vs. 3 + 4 1 1 −1 −1 4 1.8
1 + 3 vs. 2 + 4 1 −1 1 −1 4 −5.4
1 + 4 vs. 2 + 3 1 −1 −1 1 4 1.0

1 vs. 2 + 3 + 4 3 −1 −1 −1 12 −2.6
2 vs. 1 + 3 + 4 −1 3 −1 −1 12 6.2
3 vs. 1 + 2 + 4 −1 −1 3 −1 12 −8.2
4 vs. 1 + 2 + 3 −1 −1 −1 3 12 4.6

D1 5 −4 0 0 −30
D2 0 0 8 −3 120
D3 11 11 −9 −9 −300

Note: Columns 2–5 list the coefficients for each of four treatments, column 6 lists the
sum of the squared coefficients, and column 7 lists the value of d, the sum of the
products of the comparison coefficient with the respective treatment mean.
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8.16.2 The Scheffé Test for Comparisons

If comparisons are made on the treatment means, then, as we saw before,
the standard error of the comparison will be given by

sdi
=

√
MSW

∑ a2
i

ni
(8.7)

The test of significance for the comparison is then made by finding

t =
di

sdi

(8.8)

The numerator of Equation 8.8 (that is, di) is computed by multiplying the
comparison coefficient with the respective treatment mean and summing the
products.

The Scheffé test uses a special criterion to compare the observed t ratio
of the comparison. The t defined by Equation 8.8 is evaluated for significance
by comparing it with the Scheffé criterion

t′ =
√

(k − 1)F (8.9)

where k is the number of treatments and F is the critical value from Table B.2
in Appendix B for (k − 1) numerator degrees of freedom and the degrees of
freedom for the denominator corresponding to MSW .

Confidence limits for the comparison value di can also be constructed
under the Scheffé framework by the formula

di ± t′sdi
(8.10)

Defining confidence intervals in this manner for a set of comparison values di

yields what is known as a simultaneous confidence interval. The Type
I error rate for the set of confidence intervals is controlled by the Scheffé
criterion.
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Because there is an MSW term in Equation 8.7, the equality of variance
assumption is invoked as usual (that is, the homogeneity of variance assump-
tion is what justifies the pooling of the treatment variances into MSW ). The
Scheffé test has been generalized in a manner that relaxes the equality of
variance assumption (Brown & Forsythe, 1974). However, this generalized
Scheffé test has not been widely implemented in standard statistical pack-
ages.

8.16.3 Properties of the Scheffé Test

The Scheffé test is a statistical test that permits the investigator to examine
the data and to make an unlimited number of comparisons. Regardless
of the number of comparisons tested, the protection level remains greater
than or equal to 1 − α, and P (E) remains less than or equal to α. That
is, if comparisons are tested with the Scheffé procedure, the probability of
making a Type I error will be less than or equal to α—regardless of how
many comparisons one chooses to make.

As we pointed out earlier, the Scheffé test has the property that if the
omnibus F = MST/MSW is not statistically significant at α, then no com-
parison that can be made on the k treatment means will be statistically
significant. In the example, if the F test for the treatment mean square
had not been equal to or greater than F = 2.86 (which is the critical value
for 3 and 36 degrees of freedom with α = 0.05), then there would not be
any comparison on the k = 4 means that would result in t ≥ t′ = 2.93
(that is, no comparison would reach statistical significance). If the omnibus
F = MST /MSW is statistically significant with α = 0.05, then there will be
at least one comparison that can be made on the treatment means that will
also be significant, and, of course, there may be more than one comparison
that will be statistically significant. It does not follow, however, that com-
parisons found to be statistically significant will necessarily be those that are
of interest to the experimenter or even correspond to meaningful research
questions.
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The Scheffé test is based on Scheffé’s observation that it is possible to
find a single comparison that yields the same sum of squares as the overall
treatment sum of squares. Recall that orthogonal comparisons decompose
the treatment sum of squares. Scheffé showed that it is always possible to
find a comparison that completely exhausts the sum of squares treatment
SST . That is, there exists a comparison with sum of squares SSC equal to
the entire sum of squares for treatments SST . This comparison is called the
“maximum comparison” because a comparison cannot be greater than this
single comparison (otherwise it would be greater than the treatment sum of
squares, which it cannot be). Scheffé derived the sampling distribution for
this maximum comparison and thus proved the test that we now refer to
as the Scheffé test. Because this test is based on sampling distribution of
the maximum comparison, it has the property that it can be used for any
number of comparisons, and it will automatically provide a correction for
the Type I error problem.

8.17 Summary

The comparison of treatment means described in this chapter is an impor-
tant tool in research. Frequently, a researcher conducts a study to test a
particular hypothesis about a pattern of treatment means. The omnibus
test we discussed in Chapter 6 is useless to the researcher who is not in-
terested in the global question of whether the means differ but instead is
interested in testing specific hypotheses about the treatment means. As
long as the research question can be operationalized in terms of a weighted
sum of treatment means, then a comparison to test that predicted pattern
directly is most useful.

The Scheffé test is the ideal test for the experimenter who does not have
planned comparisons and who wishes to explore thoroughly the outcome of
an experiment, making any and all comparisons suggested by the data. The
experimenter can do so knowing that, regardless of the number of compar-
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isons made, P (E) will be less than or equal to the chosen value of α, say
α = 0.05. Of course, this flexibility in statistical tests comes at the price
of a very conservative criterion for statistical significance. This may lead to
lower statistical power.

In the case where an experimenter will only test all possible pairwise
comparisons, then we recommend the Tukey test (Chapter 7) over the Scheffé
test. The Tukey test directly takes into account the sampling distribution rel-
evant to pairwise comparisons and will not be as conservative as the Scheffé
test, which takes into account the sampling distribution for a much larger
number of possible comparisons.

8.18 Questions and Problems

1. A study includes a control group and 5 treatment groups, with 10
observations for each group. We have MSW = 36.00 for the within-
treatment mean square. The means for the six groups are given here:

Control A B C D E
18.6 20.5 23.4 19.6 28.3 26.2

Perform a comparison that tests whether the control group differs from
the average of the five treatments. Explain why this comparison is not
identical to a two-sample t test that compares the control group to
all other participants (that is, calling participants in the other five
treatments a single group).

2. We have a between-subjects experimental design in which the treat-
ments consist of three equally spaced intervals of testing. One group is
tested for retention of learned material after 12 hours, another group
after 24 hours, and the third group after 36 hours. The means for the
groups are 11.0, 9.0, and 5.0, respectively. We have n = 10 participants
in each group, and MSW is equal to 20.0 with 27 degrees of freedom.
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(a) Do the treatment means differ significantly from one another?
Explain how you interpret this question, and justify the particular
statistical test you perform.

(b) Test the linear trend component of the means for significance.
What is the effect size of the linear component?

3. In an experiment involving k = 4 treatments, n = 10 participants were
assigned at random to each treatment. We have MSW = 16.0. Find
the standard error for each of the following comparisons:

(a) 1 1 −1 −1
(b) 1 −1 0 0
(c) 3 −1 −1 −1

4. What is meant by a comparison on a set of k means?

5. What is the condition for two comparisons to be called orthogonal?

6. We have k = 5 treatments with n = 8 participants assigned at random
to each treatment. If the omnibus F = MST /MSW is not significant
with α = 0.05, explain why there will not be a comparison on the
treatment means that will be significant according to the Scheffé test.

7. We have n = 10 participants assigned at random to each of k = 8
treatments. We wish to make c = 5 unplanned comparisons and to
have P (E) ≤ 0.05. What value of t (that is, tcritical) will be required
for significance for these comparisons, using Scheffé’s test?

8. Suppose that in the experiment described in Problem 7 the c = 5 com-
parisons are planned comparisons, decided upon prior to conducting
the experiment. We are concerned, however, about Type I errors and
want to have P (E) ≤ 0.05 for the set of c = 5 comparisons. If the
Bonferroni t statistic is used to control P (E), what value of t will be
required for significance in testing each of the five comparisons? Which
test, Scheffé or Bonferroni, is more conservative in this example?
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9. Use data presented as part of Question 2 in Chapter 6 (page 187), which
presented raw data for six groups. Imagine that these six conditions
are six levels of increasing dose of a drug, with Treatment 1 receiving
the lowest dose and Treatment 6 receiving the highest dose.

(a) Construct a set of polynomial comparisons for these six treatment
groups.

(b) Compute the t test for each of these comparisons.

(c) Show that the sum of squares across the set of orthogonal com-
parisons equals the sum of squares from the one-way ANOVA.
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