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Regression, Structural Equation
Modeling, Mplus, and lavaan

HISTORICAL OVERVIEW

Structural equation modeling (SEM) is a comprehensive analytic framework for esti-
mating statistical models and evaluating statistical models against empirical data. The
SEM framework is a multivariate framework and has been used to test theories regard-
ing indirect effects, latent variables underlying measured indicators, growth and change
of constructs, and the invariance of model parameters across groups and time. Histori-
cally, the SEM framework was a linear modeling framework building on multiple linear
regression models and extending to linear latent variable models (e.g., linear confirma-
tory factor models). Thus, data for SEMs were assumed to be normally distributed. With
this assumption, the covariance matrix for the empirical data could be calculated and
used to estimate model parameters.

Categorical variables were first considered in the SEM framework in the 1970s. Initial
inclusion of categorical variables focused on binary (dichotomous) variables as indicators
in a confirmatory factor model. In 1970, Bock and Lieberman (1970) presented a method
for estimating parameters of the normal ogive model (cumulative normal distribution)
for binary indicators of a common factor using a maximum likelihood estimation routine.
This allowed for the expected nonlinear associations between common factors and binary
indicators but faced computational challenges. The computational challenges essentially
put a limit on the number of indicators (10 to 12 indicators) and the number of common
factors (i.e., 1 common factor).

Christoffersson (1975) and Muthén (1978) took a different approach to the estima-
tion of common factor models with binary indicators. They discussed an approach based
on first estimating the thresholds (i.e., means, proportions) and the tetrachoric correla-
tions for the sample data, and then using a generalized least squares estimator to estimate
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2 Regression, Structural Equation Modeling, Mplus, and lavaan

model parameters. This work increased the number of indicators that could be analyzed,
increased the number of factors that could be considered, and led to further developments
for binary variables within the general SEM framework (Muthén, 1979, 1983; Muthén &
Christoffersson, 1981). This work culminated in a general SEM framework for binary,
ordered categorical, and quantitative variables (Muthén, 1984) using generalized least
squares estimators.

The work by Bock and Lieberman (1970) led to improvements in the estimation of
item response models (Lord & Novick, 1968). Item response models, at the time, were
a class of latent variable models for binary and ordered categorical indicators with strict
assumptions. These assumptions included a single latent variable (i.e., unidimensional-
ity), local independence (i.e., item responses are independent after accounting for the
underlying factor), and monotonicity (i.e., monotonic association between the underly-
ing factor and item response). These models were primarily developed in the educational
sciences and independent of the growth in the factor analysis of binary and ordered
categorical outcomes in the psychological sciences.

Over time, the item response and factor analytic frameworks for binary and ordered
categorical outcomes were united with the realization of their equivalence. Now, SEM
programs (e.g., Mplus, lavaan, and Lisrel) allow for the specification and estimation
of item response models, and item response modeling programs (e.g., flexMIRT and
IRTPRO) allow for the specification of models traditionally fit in the SEM framework.
These programs are often referred to as general latent variable modeling programs because
of their ability to estimate a variety of models.

STRUCTURAL EQUATION MODELING

SEM is a framework for the specification and estimation of statistical models. This general
definition of SEM encompasses a large number of statistical models, including, but not
limited to, regression models, path models (i.e., multivariate regression models), con-
firmatory factor models, path models with latent variables, and finite mixture models.
SEM is often considered a theory-driven framework, where researchers specify models
that were developed based on theory, and test these models against empirical data. Thus,
the specified statistical model is a representation of the theory, which can include latent
variables to represent constructs (often indicated by observed variables), as well as direct
effects, indirect effects, and symmetric associations between variables.

When approaching a data analysis project with SEM, the following five steps are
recommended: (1) Theory → Model: Form ideas based on theory for how constructs are
expected to be related to one another; (2) Model Formulation: Determine how measured
variables fit into the theory-driven model; (3) Model Specification and Estimation: An SEM
program is used to specify the model, estimate model parameters and standard errors, and
calculate various indices of model fit; (4) Evaluation and Interpretation: Examine the fit
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of the model (potentially compare the fit of the proposed model to alternative models),
and interpret the model parameters; (5) Extension: Explore new ideas and models based
on the findings.

The first step is Theory → Model, in which researchers form statistical models relat-
ing the constructs of interest. Cooley (1978, 13) noted that “the purpose of statistical
procedures is to assist in establishing the plausibility of a theoretical model.” The SEM
framework is a general statistical framework that allows researchers to be explicit about
theory and how it is reflected in the model. The goal is to match the model as closely as
possible to the theory, which then allows for the examination of the plausibility of the
model given the observed data. I recommend this step is done with constructs in mind
as opposed to measured variables.

The second step is Model Formulation, in which measured variables are placed into
the theoretical model. The measured variables may be indicators of latent variables repre-
senting the constructs from Step 1, they may represent the constructs from Step 1 directly,
or they may represent measured explanatory variables or covariates. The third step is
Model Specification and Estimation, in which the statistical model from Step 2 is specified
using an SEM program and the model parameters are estimated. It’s important to ensure
that the model is identified (i.e., a unique set of parameter estimates optimize the fit of the
model). Estimation is often carried out using maximum likelihood estimation. The maxi-
mum likelihood estimates (assuming multivariate normal data) are those that minimize
the maximum likelihood fit function (FML) contained in Equation 1.1. Calculating max-
imum likelihood estimates is an iterative process. At each iteration, parameter estimates
and the maximum likelihood fit function are updated. The maximum likelihood fit func-
tion is minimized when the difference between the model-implied covariance matrix and
the covariance matrix for the measured variables is minimized.

EQUATION 1.1.

FML = log|Σ(θ̂)| + tr
(
SΣ−1(θ̂)

)
− log|S| − (p + q)

• θ̂ - current set of parameter estimates

• Σ(θ̂) - model-implied covariance matrix with current parameter estimates

• S - covariance matrix for the measured variables

• p + q - number of measured variables

• || - determinant function

• tr () - trace function

The fourth step is Evaluation and Interpretation, in which the fit of the model is
examined to determine whether the model is plausible. Often, model fit is evaluated
using various fit indices, including the χ2 test of model fit, the Root Mean Square Error
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4 Regression, Structural Equation Modeling, Mplus, and lavaan

of Approximation (RMSEA), the Comparative Fit Index (CFI), the Tucker-Lewis Index
(TLI), and the Standardized Root Mean Square Residual (SRMR). The RMSEA and SRMR
are absolute fit indices, where lower values indicate better model fit. The CFI and TLI are
incremental fit indices, where higher values indicate better model fit. The residual covari-
ance matrix should also be examined to understand where the model fits and misfits the
observed covariancematrix (i.e., the data). If themodel is determined to be plausible (i.e.,
consistent with the data), the parameter estimates (e.g., factor loadings, direct effects,
indirect effects) should be interpreted.

The fifth and final step is Extension, in which the results from Step 4 are used to
determine next steps. For example, if the model fit was poor, novel models may be pro-
posed (and potentially evaluated with novel data). If the model fit was good, then next
steps to evaluate the theory may be proposed.

PATH DIAGRAMS

Path diagrams are a key aspect of SEMs. These diagrams depict the model’s specification,
which aids in the communication of complexmultivariate models. Path diagrams can also
be used for model specification in some statistical programs (e.g., AMOS). Path diagrams
using reticular action model (RAM) notation (McArdle, 1980, 2005; McArdle & McDon-
ald, 1984) contain all of the model’s components and parameters, and this approach to
drawing path diagrams is used throughout this book.

In these diagrams, squares represent measured (observed) variables (i.e., variables
in the dataset), and circles represent unmeasured (latent) variables (i.e., variables not
contained in the dataset). One-headed arrows represent directive associations, such as
regression slopes and factor loadings, whereas two-headed arrows represent symmet-
ric associations, such as variances and covariances. A triangle is used to represent the
constant, which allows for the inclusion of means and intercepts as one-headed arrows
originating from the triangle.

A RAM notation path diagram of a single-factor model is shown in Figure 1.1. The
latent variable η1 is indicated by five measured variables named y1 through y5. The factor
loading and measurement intercept for y1 are fixed at 1 and 0, respectively. This allows
us to estimate the mean and variance of η1. The remaining factor loadings are estimated
and labeled λ21 through λ51, denoting the measured variable number (i.e., 2 through 5)
and the latent variable number (i.e., 1). The measurement intercepts for y2 through y5

are labeled ν2 through ν5 and the unique factor variances for y1 through y5 are labeled
θ11 through θ55. The unique covariance between y4 and y5 is denoted θ54. The latent
variable’s variance is denoted ψ11, and its mean is α1. The labeling of model parameters
here follows the all-y notation from Lisrel.
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FIGURE 1.1. RAM notation path diagram of a single-factor model.

STATISTICAL PROGRAMS

Throughout the book, I utilize two statistical programs. These programs are R (R Core
Team, 2021) and Mplus (Muthén & Muthén, 1998–2017). R is a free, comprehensive,
open-source statistical program that can be downloaded from https://cran.r-project.org/.
R allows and encourages researchers to modify, extend, and develop additions to the base
program. These additions are referred to as packages. The packages used throughout the
book include the ggplot2 (Wickham, 2016) package for high-quality plotting; the psych
(Revelle, 2023) package for descriptive statistics; the VGAM (Yee, 2015), MASS (Venables &
Ripley, 2002), and pscl (Jackman, 2020) packages for regression models with categorical
outcomes; and the lavaan (Rosseel, 2012) package for SEM. lavaan is a comprehensive
SEMpackage that can handle both continuous variables and ordered categorical variables.
lavaan also has a straightforward programming language for model specification and
several estimation routines for fitting SEMs with ordered categorical outcomes.

The second program is Mplus, which is the most comprehensive latent variable mod-
eling program available. Mplus can fit SEMs, multilevel models, and mixture models, and
it can handle continuous, ordered categorical, unordered categorical, count, zero-inflated,
and censored outcome variables. Mplus has efficient estimation routines, especially for
categorical outcomes; features a straightforward programming language; and is contin-
ually being improved. This makes Mplus the most utilized latent variable modeling
program available. The Mplus website (http://statmodel.com/) contains a demonstration
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6 Regression, Structural Equation Modeling, Mplus, and lavaan

version of the program that is only limited by the number of variables included in the
analysis, the user manual, a collection of examples, discussion forums, and a series of
papers highlighting the features of the program.

lavaan
Models are specified and estimated using lavaan in two steps. The first step is the model’s
specification and the second step is the model’s estimation using one of lavaan’s func-
tions. The model’s parameters are specified using a series of symbols to relate variables to
one another or to themselves. The model’s specification is contained within quotes and
assigned to an object.

The symbol ~ is used to specify regression models with the outcome variable on
the left-hand side and the explanatory variables on the right-hand side. For example,
yi ~ x1i + x2i specifies a regression model with yi as the outcome and x1i and x2i
as the explanatory variables. This notation follows the specification of regression models
in R using the lm() or glm() functions. The same symbol, ~, is also used to specify
means and intercepts when the right-hand side of the equation is 1. For example, y1i ~ 1
specifies the mean of y1i if it is an explanatory variable or its intercept if it is an outcome
variable (note that the term intercept is simply a conditional mean).

The symbol =~ is used to denote factor loadings of measurement models with the
latent variable on the left-hand side and the indicators on the right-hand side of the
symbol. For example, eta1 =~ y1i + y2i + y3i specifies eta1 as the latent variable
with y1i, y2i, and y3i as its indicators. The symbol ~~ is used to specify variances and
covariances (i.e., two-headed arrows in the path diagram). Covariances are specified by
listing different variables on each side of the symbol, and variances are specified by listing
the same variable on both sides of the symbol. For example, y1i ~~ y2i specifies the
covariance between these two variables, and y1i ~~ y1i specifies the variance of y1i.

Once the model is specified, the model is estimated using one of lavaan’s func-
tions. These include lavaan(), sem(), cfa(), and growth(). Each function takes the
object name from the model’s specification and the name of the dataset. Additional state-
ments, such as estimator= and missing=, are added to control estimation options.
The summary() function is then used to print the parameter estimates and model fit
information. An example model specification for the model in Figure 1.1 is contained in
Appendix 1.A.

Mplus
An input file for Mplus typically has six statements: (1) TITLE:, (2) DATA:, (3)
VARIABLE:, (4) ANALYSIS:, (5) MODEL:, and (6) OUTPUT:. The TITLE: and DATA:
statements are where the title for the model and the data file to be analyzed are listed.
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The VARIABLE: statement is where the names of the variables are listed along with sev-
eral options regarding the variable scores. For example, the variables to be included in
the model and the missing data indicator are listed in the VARIABLE: statement. The
ANALYSIS: statement is used to specify aspects of the model’s estimation. This state-
ment isn’t necessary, but this is where the type of analysis (TYPE=) and the estimator
(ESTIMATOR=) are specified. This statement is only used when default settings are not
desired. The MODEL: statement is where the parameters of the SEM are specified, and the
OUTPUT: statement is used to specify output options, such as requesting standardized
parameter estimates or sample statistics.

The MODEL: statement, where the parameters of the SEM are specified, is the focus
of this discussion. Mplus uses keywords to specify parameters connecting variables (e.g.,
regressions, factor loadings, covariances), and parameters related to the variable itself
(e.g., mean) are specified by referring to the variable names in different ways. The key-
word ON is used to specify regression models with the outcome variable on the left-hand
side and the explanatory variables on the right-hand side. For example, yi ON x1i x2i;
specifies a regression with yi as the outcome and x1i and x2i as the explanatory vari-
ables. The keyword BY is used to denote factor loadings of measurement models with
the latent variable on the left-hand side and the indicators on the right-hand side. For
example, eta1 BY y1i y2i y3i; specifies eta1 as the latent variable with y1i, y2i,
and y3i as its indicators. Finally, the keyword WITH is used to specify covariances. For
example, y1i WITH y2i; specifies the covariance between these two variables.

Univariate parameters are specified by referring to the variable names in different
ways. Variances and residual variances are specified by listing the variable names. For
example, the code y1i y2i; specifies the variances (or residual variances if they are
outcome variables) of these two variables. Means and intercepts are specified by writing
the variable names in brackets. For example, the code [y1i y2i]; specifies the means
(or intercepts if they are outcome variables) of these two variables. An example Mplus
input script for the model in Figure 1.1 is contained in Appendix 1.A.

LINEAR REGRESSION

SEM can be viewed as a multivariate extension of linear regression analysis. Thus, having
a solid foundation in multiple linear regression is essential for understanding SEM. Here,
I review multiple linear regression. I also generate (simulate) data from a linear regres-
sion model and estimate a regression model using the simulated data. When fitting the
regression model, the goal is to obtain parameter estimates that align with the population
parameters used in data generation. This process of generating data and fitting the appro-
priate statistical model is helpful in understanding the components and assumptions of
statistical models. This, in turn, leads to a deeper understanding of the model and its
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interpretation. I use this approach throughout the book as I’ve found it to be especially
beneficial when analyzing categorical outcomes.

Regression analysis is the primary analytic tool for developing explanatory models
in the social and behavioral sciences. Regression models are also specified for evaluating
causal effects in experimental studies. The linear regression model assumes the outcome
is quantitative and is written in Equation 1.2. The key parameters of the linear regression
model are the intercept, which is the predicted value of the outcome when the explanatory
variable scores equal 0, and the slopes, which are expected differences in the outcome
score for a 1-unit increase in the respective explanatory variable score (holding all other
explanatory variable scores constant).

EQUATION 1.2.

yi = b0 + b1 · x1i + ... + bp · xpi + ei

• yi - outcome variable score for individual i

• x1i through xpi - explanatory variable scores for individual i

• b0 - intercept parameter

• b1 through bp - slope parameters

• ei - residual term

The residual term in the linear regression is the difference between the expected
value of yi (denoted ŷi or E (yi|xi)) and the observed value of yi, and is assumed to be
normally distributed with a mean of 0 and a standard deviation of σe. These residuals are
assumed to be independent of (uncorrelated with) the explanatory variable scores.

As mentioned earlier, the components of the linear regression model can be better
understood through simulation. To highlight the components of linear regression mod-
els, I’ll simulate data following the linear regression model in Equation 1.3, where the
intercept is 25 and the slope is 0.8. In this simulation, I generate data for N = 500 cases.

EQUATION 1.3.

yi = 25 + 0.8 · (x1i − 20) + ei

• x1i - the explanatory variable simulated from a normal distribution with a mean

of 20 and a standard deviation of 6 (i.e., x1i ∼ N (20, 6))
• ei - the residual scores simulated from a normal distribution with a mean of 0

and a standard deviation of 8 (i.e., ei ∼ N (0, 8))

Cop
yri

gh
t ©

20
26

 The
 G

uil
for

d P
res

s



Regression, Structural Equation Modeling, Mplus, and lavaan 9

The R code to generate these data is

# sample size
N = 500
# regression parameters
b0 = 25
b1 = .8
# explanatory variable scores
x1i = rnorm(N,20,6)
# prediction equation
yhati = b0 + b1*(x1i - 20)
# residuals
ei = rnorm(N,0,8)
# observed scores
yi = yhati + ei
# putting the simulated data into a data frame
temp = data.frame(x1i,yi,yhati,ei)

where I begin by setting the sample size and population parameters for the regression
model. Explanatory variable scores are generated using the rnorm() function, which
generates random scores from a normal distribution with a given mean and standard
deviation. Thus, the code rnorm(N,20,6) generates 500 random scores from a normal
distribution with a mean of 20 and a standard deviation of 6. From the explanatory vari-
able scores, x1i, I generate the predicted values of the outcome. I call these predicted
values yhati, and these values are generated based on the population regression equa-
tion. The residual scores are then generated using the rnorm() function and come from a
normal distribution with a mean of 0 and a standard deviation of 8. The outcome scores,
denoted yi, are created as the sum of the predicted scores and the residuals. These simu-
lated data are then put into a data frame named temp. A bivariate scatterplot of these data
is shown in Figure 1.2, where the positive association between x1i and yi is visualized.
The population regression line is also plotted in this figure and the yi scores vary around
this regression line.

One check on the correctness of the data generation process is to use linear regres-
sion software to estimate the regression parameters for these simulated data. The code
to specify and estimate a linear regression model in R follows. First, a centered version
of x1i is calculated. This variable, named x1iC20, is equal to x1i minus 20. The lin-
ear regression model is specified next using the lm() function. The regression model is
specified as yi ~ x1iC20 as yi is the outcome and x1iC20 is the explanatory variable.
The dataset is temp. The object linearReg1 holds the output from the linear regres-
sion and the summary() function is used to print the parameter estimates and model fit
information.
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FIGURE 1.2. Bivariate scatterplot with regression line for the simulated data.

temp$x1iC20 = temp$x1i - 20

linearReg1 = lm(yi~x1iC20, temp)
summary(linearReg1)

##
## Call:
## lm(formula = yi ~ x1iC20, data = temp)
##
## Residuals:
## Min 1Q Median 3Q Max
## -28.295 -5.293 0.294 5.133 34.665
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 24.57244 0.34932 70.34 <2e-16 ***
## x1iC20 0.78202 0.05567 14.05 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 7.787 on 498 degrees of freedom
## Multiple R-squared: 0.2838, Adjusted R-squared: 0.2823
## F-statistic: 197.3 on 1 and 498 DF, p-value: < 2.2e-16
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The estimated intercept was 24.57 and the estimated slope for x1iC20 was 0.78,
and these values map onto the population parameters used to generate the data, which
gives me confidence that the data were correctly generated. The explained variance for
the model was 0.28, which is the amount of variance in yi accounted for by x1iC20. The
value in the population was 0.26 (26%) and this population value is calculated as the
variance in yi associated with x1iC20, which is equal to b1 · σ2

x1 · b1, divided by the total

variance in yi, which is equal to b1 · σ2
x1 · b1 + σ2

e

(
i.e., b1·σ2

x1·b1

b1·σ2
x1·b1+σ2

e

)
.

Explained variance (i.e., R2) in the linear regression model can be thought about in
a variety of ways. For example, explained variance is equal to the squared correlation
between the observed and predicted outcome scores

(
i.e., (cor [yi, ŷi])2

)
, the propor-

tional reduction in the residual variance when fitting the hypothesized model compared

to when fitting an intercept-only model
(
i.e., var(yi−ȳi)−var(yi−ŷi)

var(yi−ȳi)

)
, and the proportion of

the variance in the outcome attributed to the explanatory variables
(
i.e., var(ŷi)

var(ŷi)+var(ei)

)
.

These different ways to think about explained variance are calculated in the following
R script, and all lead to the same estimate, which is 0.28. The consistency of these dif-
ferent approaches to calculating explained variance changes when analyzing categorical
outcomes.

# squared correlation
cor(yi,fitted.values(linearReg1))^2

## [1] 0.2837724
# proportional reduction in residual variance
linearReg0 = lm(yi ~ 1, temp)
1 - var(residuals(linearReg1))/var(residuals(linearReg0))

## [1] 0.2837724
# variance attributable to explanatory variables
var(fitted.values(linearReg1))/var(yi)

## [1] 0.2837724

OVERVIEW OF THE BOOK

This book is written to lead the reader from regression analysis with categorical out-
comes through complex SEMs with latent variables for categorical indicators. The book
is broken down into four sections. The first section, Regression Analysis with Categori-
cal Outcomes in R, discusses the specification, estimation, and interpretation of multiple
regression models for binary, ordinal (ordered categorical), nominal (unordered cat-
egorical), and count outcomes. Empirical data are analyzed in each chapter using R
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12 Regression, Structural Equation Modeling, Mplus, and lavaan

(comparable code for SAS is available on the companion website). This section sets
the stage for the interpretation of model parameters when working with categorical
outcomes.

In the second section, Regression Analysis with Categorical Outcomes in Structural
Equation Modeling Programs, I first review the specification of categorical outcomes in
Mplus and lavaan and then discuss the specification, estimation, and interpretation of
multiple regression models for binary, ordinal, nominal, and count outcomes using these
programs. The same empirical data analyzed in Section 1 are reanalyzed in Section 2,
so the comparability of the results is examined. This section highlights how univariate
models for categorical outcomes can be estimated with SEM programs, which bridges
the gap between regression models for categorical outcomes and more complex SEMs for
categorical outcomes.

The third section, Structural Equation Models with Categorical Outcomes, discusses
pathmodels, confirmatory factormodels, and latent variable pathmodels with categorical
outcomes. In the first chapter of this section, I describe the specification, estimation,
and interpretation of path models with multiple binary and ordinal outcomes as well
as path models with binary and ordinal mediators. In the second chapter, I discuss the
factor-analytic and item response model specifications of latent variable measurement
models for binary and ordinal variables. In the third chapter, I discuss how factor-analytic
models can be incorporated into path models. Here, I describe a two-step approach to
first examine the fit of the measurement model prior to examining the fit of the full SEM.
Empirical data are analyzed in each chapter using Mplus and lavaan.

The fourth and final section, Advanced Structural Equation Models with Categorical
Outcomes, covers five topics. First, I describe growth models to examine between-person
differences in within-person change when the outcome is binary or ordinal. Second, I
discuss multiple group confirmatory factor models with binary and ordinal outcomes to
evaluate measurement invariance or the invariance of measurement parameters over mea-
sured groups of individuals. Third, I present latent class models, which are a type of finite
mixture model for binary and ordinal outcomes, to examine whether there are different
response patterns for different unobserved groups of participants. Fourth, I discuss count
outcomes that have a high preponderance of zero responses. I review zero-inflated and
hurdle models for these outcomes, but I limit the discussion to regression models even
though more complicated models (e.g., growth models, measurement models) can be fit
with these types of outcomes. Finally, I discuss time-to-event data as another form of cat-
egorical data and describe discrete- and continuous-time survival models for these data.
Empirical data are analyzed in each chapter using Mplus and lavaan, where possible.
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RECOMMENDED USES OF THE BOOK

This book is designed based on a categorical SEM workshop I taught through Statisti-
cal Horizons and a subsequent graduate course I developed titled Advanced Categorical
Data Analysis. Thus, this book can be used as a stand-alone text for similar graduate
courses in psychology, education, human development, family studies, and sociology.
Additionally, this book can be used as a companion for excellent books on categorical
data analysis (e.g., Categorical Data Analysis by Agresti [2013]; An Introduction to Cate-
gorical Data Analysis by Agresti [2018]; Applied Categorical and Count Data Analysis by
Tang et al. [2023]; and Categorical Data Analysis and Multilevel Modeling Using R by Liu
[2023]) that do not discuss SEM. The book can also be used as a companion for excellent
SEM books (e.g., Principles and Practice of Structural Equation Modeling by Kline [2011];
Structural Equations with Latent Variables by Bollen [1989]; and Latent Variable Models: An
Introduction to Factor, Path, and Structural Analysis by Loehlin [1998]) that do not cover
categorical data SEMs.
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