
3
Model Speci cation

SEM starts with the model speci cation. A structural equation model
is essentially a set of structural equations that puts constraints on the
model-implied variance-covariance matrix of observed variables. It can
be subdivided in the inner model and the outer model. The inner model
captures the relationships among the constructs. The outer model en-
tails the relationships between the constructs and the observed vari-
ables. The employed auxiliary theory dictates a certain type of outer
model: composite model vs. re ective measurement model. The chap-
ter also explains causal-formative measurement. Single-indicator con-
structs can be modeled as well as categorical exogenous variables. Fi-
nally, various forms of inner models are discussed.

3.1 What Is a Structural Equation Model?

All elements of SEM circulate around the structural equation model: model
specification, model identification, model estimation, and model testing
and assessment. Without exaggeration one could thus say that the struc-
tural equation model forms the core of SEM. It deserves thus a deeper
look.

Structural equation models are a special case of statistical or mathemat-
ical models. They entail a set of mathematical equations that describe a
section of the observable world, thereby putting constraints on the model-
implied variance-covariance matrix of observed variables. The mathemat-
ical equations are functions of the form {V} = f ({V}, {R}, {p}). {V} is a set of
model variables, {R} is a set of relationships, and {p} denotes a set of model
parameters.

Structural equation models can not only be expressed by means of equa-
tions, but also graphically. Graphically representing structural equation
models has intuitive appeal, because it often facilitates the understanding
and interpretation of the model. To illustrate the variables, relationships,
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FIGURE 3.1. An exemplary structural equation model with three constructs.

and parameters that are typical for structural equation models, we make
use of the small structural equation model depicted in Figure 3.1.

In SEM, we can distinguish between three types of variables: observed
variables, unobserved variables, and synthetic variables. All three types of
variables can be found in Figure 3.1.

We speak of an observed variable if in our data we have concrete values of
this variable for the individual observations. In graphical representations
of structural equation models, observed variables are denoted by squares
or rectangles. There are nine observed variables in the exemplary model of
Figure 3.1: y11 to y13, y21 to y23, and y31 to y33.

In contrast, unobserved variables do not have a sample realization; i.e., we
do not have concrete values of an unobserved variable for the individual
observations. Unobserved variables are visualized using round shapes,
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particularly ovals and circles. There are three types of unobserved vari-
ables: latent variables, measurement errors, and disturbance terms.

Latent variables are constructs in the sense of measurement theory; i.e.,
the axiom of local independence applies (see Section 2.3). They are usually
employed to represent theoretical concepts of behavioral research. Latent
variables are typically represented by ovals. In Figure 3.1, η1 and η3 are
latent variables.

Another type of unobserved variables is measurement error. Measure-
ment error captures that portion of an observed variable’s variance that
cannot be explained by the corresponding latent variable. Measurement
errors are typically depicted as small circles. Figure 3.1 contains six mea-
surement errors: ε11 to ε13 and ε31 to ε33. Latent variables and measurement
errors are discussed more thoroughly in Subsection 3.2.2.

If a construct in a structural equation model is explained by one or more
other variables, usually a part of its variance remains unexplained. This
unexplained variance is captured by a disturbance term. Disturbance terms
are visualized as circles. In Figure 3.1, ζ is a disturbance term.

Synthetic variables are not obtained through data collection but created
by means of data transformation. The dominant way of creating synthetic
variables is by forming linear combinations of other variables. Depending
on whether these other variables are observed or unobserved, the resulting
synthetic variable will be observed or unobserved. Two types of synthetic
variables can be distinguished: emergent variables and excrescent vari-
ables.

Emergent variables are constructs in the sense of synthesis theory; i.e.,
the axiom of unity applies (see Section 2.4). They are usually employed to
represent forged concepts of design research. The axiom of unity requires
that an emergent variable is related to at least one other variable in a
structural equation model. Emergent variables are typically represented
by hexagons. In Figure 3.1, η2 is an emergent variable.

Excrescent variables capture the remaining variance of a set of variables
after an emergent variable has been extracted. Excrescent variables are
unrelated with all variables they are not formed of. They are visualized by
means of small hexagons. In Figure 3.1, ν1 and ν2 are excrescent variables.
Emergent and excrescent variables are the building blocks of composite
models as presented in Subsection 3.2.1.

There is another important distinction of variables in a structural equa-
tion model, namely by the role that they play. Variables that do not depend
on any other variable in the model are called exogenous. They have a cause
external to the structural equation model. In a graphical representation of
a structural equation model, exogenous variables can be recognized by the
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fact that no straight arrow points at them. For instance, the variables η1,
ε11, ν1, and ζ in Figure 3.1 are endogenous. In contrast, endogenous vari-
ables have an internal cause, which means that there is at least one other
variable in the structural equation model causing them. In a graphical rep-
resentation of a structural equation model, endogenous variables can be
recognized by the fact that at least one straight arrow points at them. For
instance, the variables η3 and y11in Figure 3.1 are exogenous.1

Predominantly, two types of relationships between variables are studied
in SEM: direct linear relationships and covariances. A direct linear relation-
ship expresses a dependence relationship; it is characterized by a straight
arrow pointing from an independent variable to a dependent variable. The
parameters quantifying direct linear relationships between constructs are
called path coefficients. In Figure 3.1, the parameters β1 and β2 are path co-
efficients. Direct linear relationships pointing from constructs to observed
variables are called (indicator) loadings. For loadings, usually the Greek
letter λ is employed.

Covariances mainly occur at three locations within a structural equation
model: between constructs, between error terms, and between disturbance
terms. Figure 3.1 contains a covariance between the constructs η1 and η2
denoted byφ, and a covariance between the error terms ε11 and ε31 denoted
by θ. A covariance between a disturbance term and another disturbance
term or a construct are denoted by ψ.

Finally, the variances of all introduced variables except for the observed
indicators are model parameters as well. The variances make use of the
same symbol as the according covariances, because they can all be ex-
pressed as elements of a variance-covariance matrix. Hence, the variances
of the emergent, latent, and excrescent variables are denoted by φ, the vari-
ances of the disturbance terms byψ, and the error variances byθ. Figure 3.2
summarizes the elements of structural equation models that have a visual
representation.2

Structural equation models are typically composed of two submod-
els: the outer model and the inner model. The outer model contains the
equations postulated by the auxiliary theory. In contrast, the inner model
captures the effects among constructs; it models thus the substantial theory.
In the remainder, we discuss each of these submodels in more depth.

1In order to distinguish between exogenous and endogenous constructs, some scholars pre-
fer to use the Greek letter ξ for exogenous constructs and the Greek letter η for endogenous
constructs only.
2Some SEM software with graphical user interface does not offer the possibility to specify
synthetic variables. In such a case, one can usually employ the workaround of specifying
unobserved variables instead of synthetic variables.
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FIGURE 3.2. Symbols employed in graphical representations of structural equation mod-
els.

3.2 The Outer Model

The outer model expresses the relationships between the observed variables
and the constructs. The observed variables are also known under the
terms “indicators,” “manifest variables,” or “observable variables.” Each
observed variable corresponds to a column in the empirical dataset.

The outer model implements the constructs’ auxiliary theories. Since
there are two auxiliary theories, there are also two main outer models with
multiple indicators: The composite model (see Subsection 3.2.1) should be
used to operationalize forged concepts if synthesis theory is used. The
reflective measurement model (see Subsection 3.2.2) is the model of choice to
operationalize theoretical concepts of behavioral research if measurement
theory is applied. Reflective measurement models can be complemented
with causal-formative measurement (see Subsection 3.2.3).

For each concept, analysts must decide whether they intend to model it
as an emergent variable or a latent variable. As depicted in Figure 3.3, this
decision should be based on the nature of the concept.
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FIGURE 3.3. Decision tree for specifying outer models.

For forged concepts, researchers should employ the synthesis theory as
auxiliary theory and hence rely on emergent variables. This means that
phenomena such as capabilities, indices, interventions, norms, plans, poli-
cies, portfolios, processes, recipes, strategies, and values are best modeled
as emergent variables. In contrast, for theoretical concepts, researchers
should make use of the measurement theory and rely on latent variables.
This means that phenomena like attitudes, diseases, emotions, feelings,
perceptions, and traits should be modeled as latent variables.

Since outer models connect constructs with observed variables, they
must not only suit the type of concept but also the role of the observed vari-
ables. The roles of observed variables are defined through the relationship
with the corresponding concept. If observed variables have a material re-
lationship with a concept, i.e., they form or make up a forged concept, then
they play a role as components of an emergent variable. In the methodolog-
ical literature they are also referred to as composite-formative indicators.
If observed variables have a causal relationship with a theoretical concept
of behavioral research, i.e., they cause or are caused by it, then they can
play the role of an indicator of a latent variable. At least some of a latent
variable’s indicators must be consequences, the so-called effect indicators.
Additionally, there might be some indicators that are antecedents, the so-
called cause indicators or causal-formative indicators.

There is some confusion in the literature about what is meant by for-
mative measurement. Authors referring to formative measurement some-
times discuss the characteristics of composite models and sometimes those
of causal-formative measurement models (see in particular early contribu-
tions on formative measurement, such as Diamantopoulos & Winklhofer,
2001; Jarvis, MacKenzie, & Podsakoff, 2003). This confusion can be traced
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back to Edwards and Bagozzi (2000), who deliberately sought a term that
characterizes both causal and definitorial relationships. The confusion has
culminated in statements like “When an endogenous latent variable relies
on formative indicators for measurement, empirical studies can say nothing
about the relationship between exogenous variables and the endogenous
formative latent variable” (Cadogan & Lee, 2013, p. 233; for a rejoinder
see Rigdon, 2014) or variance-based SEM “is not an adequate approach
to modeling scenarios where a latent variable of interest is endogenous to
other latent variables in the research model in addition to its own observed
formative indicators” (Aguirre-Urreta & Marakas, 2013, p. 776; for a re-
joinder, see Rigdon et al., 2014). The confusion can be cleared up if one
carefully distinguishes between composite models of emergent variables
and causal-formative measurement of latent variables. Emergent variables
clearly distinguish between antecedents and indicators. They can play the
role of an endogenous variable in a larger model. In contrast, latent vari-
ables measured in a causal-formative way make no distinction between
causal antecedents and cause indicators. They automatically play the role
of endogenous variables.

For researchers, it is important to correctly classify their observed vari-
ables, because components (composite-formative indicators), effect indica-
tors (reflective indicators), and cause indicators (causal-formative indica-
tors) differ with regard to several characteristics. Table 3.1 summarizes the
differences between the three roles of observed variables.

While it is recommended to operationalize concepts by means of mul-
tiple observed variables, for various reasons there is sometimes only one
observed variable available per concept (Diamantopoulos, Sarstedt, Fuchs,
Wilczynski, & Kaiser, 2012). The resulting single-indicator measurement is
treated in Subsection 3.2.4. Particular care is required if observed variables
are categorical (see Subsection 3.2.5).

Sometimes concepts are operationalized even without observed vari-
ables. In the realm of covariance-based SEM, such operationalizations are
discussed under the term “phantom variables” (Rindskopf, 1984). In most
of these instances, auxiliary theories are applied to the relationships among
constructs. Technically, such phantom variables are realized as second-
order constructs. This advanced form of SEM is explained in Chapter 10.

3.2.1 Composite Models

The composite model, also referred to as the composite factor model
(Henseler et al., 2014) or the composite-formative model (Bollen & Diaman-
topoulos, 2017), assumes a definitorial relationship between a construct and
its indicators. This means that the construct is made up of its indicators or
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TABLE 3.1. Different Roles of Observed Variables
Characteristic Component Effect Cause

indicator indicator

Observed
variable’s role

Ingredient, part,
element

Consequence Antecedent, cause

Corresponding
construct

Emergent variable Latent variable Latent variable

Correlations
among observed
variables

High correlations
are common, but
not required

High correlations
are expected

No reason to expect
the measures are
correlated

Proneness to
measurement
error

Can contain
measurement error

Contains
measurement error

Can contain
measurement error

Informative about
measurement
error

Not informative
about measurement
error

Jointly informative
about measurement
error

Not informative
about measurement
error

Consequences of
dropping an
indicator

Dropping an
indicator alters the
construct and may
change its meaning

Dropping an
indicator does not
alter the meaning of
the construct

Dropping an
indicator increases
the error on
construct level

elements. In composite models, a composite serves as a proxy of the con-
cept under investigation (Ketterlinus, Bookstein, Sampson, & Lamb, 1989;
Maraun & Halpin, 2008; Rigdon, 2012; Tenenhaus 2008). The composite
model is the tool of the trade for forged concepts, when researchers employ
the synthesis theory as auxiliary theory and hence rely on emergent vari-
ables. The composite model is thus suitable for a plethora of phenomena:
activities, approaches, availability, baskets, capabilities, classifications, con-
figurations, compilations, consumption, convenience, decisions, designs,
developments, efficacy, equity, expenditures, frameworks, indices, instru-
ments, interventions, inventories, justice, manipulations, maps, methods,
mixes, models, modifications, norms, operations, orientations, patterns,
plans, policies, portfolios, practices, prestige, procedures, processes, pro-
duction, propositions, qualifications, quality, power, recipes, resources,
skills, solutions, sources, standards, status, strategies, structures, support,
systems, tactics, technologies, tools, treatments, typologies, and values are
best modeled as emergent variables. All the aforementioned phenomena
are not naturally occurring, but artifacts that have been created by humans.3

3Note that my judgment refers to the mentioned phenomena, and not perceptions of them.
For instance, when I list quality, I refer to factual or delivered quality, not perceived quality.
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Composites are facing an increasing popularity in business and social
science. Guidelines for index construction (see, for instance, Diamantopou-
los & Winklhofer, 2001) have had substantial influence on researchers who
proposed new indices. In the social sciences, composites are used more
and more for measuring complex phenomena such as poverty, progress,
and well-being (Lauro, Grassia, & Cataldo, 2018). Probably the most well-
known index in sociology is socio-economic status, which is defined by
income and education (Nunnally & Bernstein, 1994). Moreover, the com-
posite model “will often be appropriate for ecological studies because of
the multifaceted nature of [their] theoretical concepts” (Grace, Anderson,
Olff, & Scheiner, 2010, p. 67). In general, the composite model turns out to
be a formidable instrument for modeling part-whole relationships. Nelson
and Stolterman (2003, p. 119) remind us that “[a]lthough it’s true that ‘the
whole is greater than the sum its parts,’ we must also acknowledge that the
whole is of these parts.”

In many instances when the term “formative construct” is used in lit-
erature, authors actually mean emergent variables, not latent variables
measured in a formative way. Statements about formative constructs like
that their “[i]ndicators are defining characteristics of the construct” (Jarvis
et al., 2003, p. 203) or that “[f]ormative constructs occur when the items de-
scribe and define the construct” (Petter, Straub, & Rai, 2007, p. 623) clearly
point to a definitorial relationship between a construct and its observed
variables and thus a composite model. Even a statement like “formative
constructs are inextricably tied to their measures (i.e. they do not exist
independently of measurement [. . . ])” (Diamantopoulos, 2006, p. 14) fits
more to a composite model than to a latent variable measured through
causal-formative indicators. To conclude, composite models can be consid-
ered the model of choice for formative constructs if these are understood
as being formed or defined (not caused!) by their components. Another
application of composite models is so-called formed attributes (Rossiter,
2002).

Components as the observed variables in composite models differ from
cause indicators (causal-formative indicators) in a crucial point: the type
of causality. Whereas cause indicators are causal antecedents of their con-
struct, components are material ingredients and play a definitorial role.
As has become customary for artifacts (cf. Gregor, 2009), we engage in a
wider understanding of causality, namely as originally proposed by Aris-
totle. “Aristotle distinguished four causes . . . material, formal, efficient,
and final. Respectively, they indicate that from which something was made
(material cause), the pattern by which something was made (formal cause),
that from which comes the immediate origin of movement or rest (efficient
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FIGURE 3.4. Aristotle’s four causes within a composite model.

cause), and the end for which it is made (final cause). . . ” (Poole, 2000, p. 42).
Müller-Merbach (2005) sees ubiquitous value in Aristotle’s four causes: for
a more effective design of artifacts or systems of any kind, for better under-
standing reality, and for structuring our knowledge. Already Heidegger
(1954) noted that all four causes play a role in design research. Concretely,
Aristotle’s four causes can help to better understand how a forged concept
is embedded in a nomological net. Figure 3.4 shows such a prototypical
research framework: The components serve as material causes; anteced-
ing variables are efficient causes; the purposes for which the concept was
forged are the final causes; and the forged concept itself represents the
formal cause.

In formal terms, the composite model regards the emergent variable η j
as a linear combination of its components yjk, each weighted by a compo-
nent weight wjk:

η j =

K∑
k=1

wjk · yjk (3.1)

This equation underlines the definitorial role of the components, because
they fully produce the composite.

Noteworthily, there is no unique solution for the weights of single emer-
gent variables as specified by Equation 3.1. The weights could have any
value without rendering the model wrong, i.e., the model is not identified
(see also Chapter 4). Consequently, single composites are not accessible
to model testing. Since they do not impose any restrictions on the model-
implied variance-covariance matrix of observed variables, some purists
would not regard them as models at all. However, as soon as a composite
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FIGURE 3.5. Specifying composite models as partial models in variance-based SEM.

FIGURE 3.6. Specifying emergent variables in ADANCO.

is linked to at least one other variable in a structural equation model, we
do have a testable composite model. Figure 3.5 depicts a small composite
model of two related composites, η1 and η2. This visualization is typical
for variance-based SEM. Figure 3.6 shows the graphical implementation of
this composite model in ADANCO 2.3.1.

The graphical representation of a composite model as depicted in Fig-
ure 3.5 has intuitive appeal. The arrows of the observed variables point
to the construct, emphasizing the definitorial relationship. Moreover, the
graphical model contains the weights as model parameters, and thereby
facilitates the interpretation of the emergent variable. However, this way
of graphically representing composite models has a major disadvantage,
namely that the graphical model in fact consists of two separate submodels
that are not fully integrated. On the one hand, there is a submodel spec-
ifying the relationships between the construct and its observed variables.
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On the other hand, there is a submodel specifying the construct’s interre-
latedness with other variables of the structural equation model. As a con-
sequence, there is no straightforward way for deriving the model-implied
variance-covariance matrix – a fact that has already led some researchers
to postulate that components must be uncorrelated (see, e.g., MacCallum
& Browne, 1993), although this is an unnecessary limitation.

It has become clear that in composite models, the relationships between
the components and the construct are not cause-effect relationships, but
rather a prescription of how the ingredients should be arranged to form a
new entity. More precisely, one can speak of a prescription for dimension
reduction (Dijkstra & Henseler, 2011). The idea of dimension reduction
permits an alternative view on composite models.

The K componentsy of a composite span a K-dimensional space (assum-
ing that there is no perfect collinearity among components). Any non-trivial
linear combination of components is a synthetic variable that represents a
single dimension of this space. Two types of synthetic variables can be
distinguished: Some synthetic variables are purposefully formed in such a
way that they have as strong as possible relations with other variables of the
structural equation model. These synthetic variables are called “emergent
variables.” They are denoted as η. Next to them, there can be synthetic
variables that are unrelated to all other variables of the structural equation
model. Since these synthetic variables are in some sense superfluous, I call
them “excrescent variables.” They are denoted as ν. Jointly, the emergent
variables and the excrescent variables span the K-dimensional space of the
components y (where Λ is a matrix of loadings). In matrix notation, this is
expressed by Equation 3.2:

y = Λ

(
η

ν

)
(3.2)

Synthesis theory’s axiom of unity states that if a set of components make
up one forged concept, then there is one and only one emergent variable.
Thus, if synthesis theory holds (see Section 2.4), then there is exactly one
dimension that is related to other variables of the structural equation model,
whereas the remaining dimensions are entirely unrelated to other variables
of the structural equation model. Figure 3.7 illustrates the composite model
of an emergent variable ηwith three components y1 to y3. This specification
of a composite model is one integrative model in contrast to the previous
specification of a composite model as shown in Figure 3.5.

On the one hand, the representation of a composite model in terms
of synthetic variables as depicted in Figure 3.7 is less intuitive than the
one shown in Figure 3.5, because it does not display in a straightforward
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FIGURE 3.7. Specifying composite models in covariance-based SEM.

manner that the emergent variable is formed as a linear combination of
its components. On the other hand, it demonstrates that the model can
be expressed using component loadings instead of component weights
as model parameters. It also has the advantage that the model-implied
variance-covariance matrix of observed variables can be determined in the
conventional way (see Equation 6.1 on page 119).

The composite model imposes fewer restrictions on the covariances
between indicators of the same construct than a reflective measurement
model. Since composite models are less restrictive than reflective measure-
ment models, they typically have a higher overall model fit (Landis, Beal,
& Tesluk, 2000).

Composite models as such do not explicitly take measurement error
into account. In their standard form, they assume that the components
are free from measurement error. In many practical situations of empirical
research, this assumption is certainly untenable. Fortunately, there are two
options available of how measurement error can be taken into account at
the stage of model specification.

Firstly, researchers can rely on extant knowledge about the reliability
of the observed variables or the composite. Using variance-based estima-
tors, it is possible to manually predefine a composite’s reliability so that a
correction for attenuation can be employed. In particular, ADANCO 2.3.1
permits manually defining the reliability of emergent variables with one or
more components. In covariance-based SEM, one should include indicator
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errors with predefined error variances. In both instances, it is not possible
to determine the amount of measurement error based on the available data,
but one has to rely on information external to the analysis.

Secondly, instead of employing error-prone observed variables as com-
ponents of a composite, one could use error-free latent variables as com-
ponents. The resulting model will entail a Type-II second-order construct
(see Section 10.3), i.e., an emergent variable made up of latent variables.

3.2.2 Re ective Measurement Models

Reflective measurement models form the backbone of behavioral research.
They can be used to model phenomena like attitudes, diseases, emotions,
experiences, feelings, intentions, needs, perceptions, and traits. The re-
flective measurement model is so strongly established in the social and
business sciences that hardly anyone questions its applicability, despite
the fact that empirical evidence almost always speaks against it (see, e.g.,
Henseler et al., 2014; Rigdon, 2012; Schönemann & Steiger, 1976).

The reflective measurement model has its roots in classical test theory
and psychometrics (Nunnally & Bernstein, 1994); it is a realization of mea-
surement theory as presented in Section 2.3. The observed variables are
assumed to reflect variation in a latent variable and, thereby, changes in
the construct are expected to be manifested in changes in all indicators
comprising the multi-item scale. Thus, the direction of causality is from the
construct to the indicators. Reflective measurement models are essentially
common factor models, which postulate that there is a latent variable un-
derlying a set of observed variables or indicators. In turn, each observed
variable is regarded as an error-afflicted manifestation of a latent variable,
as expressed by the following equation (see for instance Matsueda, 2012):

y = λη + ε (3.3)

In this equation, y is a vector of the observed variables, λ is a vector of
loadings, η is a latent variable, and ε is a vector of measurement errors. The
measurement errors are assumed to be centered around zero and uncorre-
lated with other variables in the model (observed variables, latent variables,
errors, etc.). Figure 3.8 depicts a typical reflective measurement model. It
consists of three observed variables y1 to y3, three measurement errors ε1
to ε3 with the according variances θ1 to θ3, and a latent variable η with a
variance ofφ. Figure 3.9 on page 53 shows what the according specification
in ADANCO looks like. It differs in several aspects from Figure 3.8: Firstly,
the measurement errors are not drawn. Since ADANCO 2.3.1 does not
allow to constrain or free variances or covariances of measurement errors,
these model elements are omitted for the sake of a simpler visual model.
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FIGURE 3.8. Re ective measurement.

Secondly, there is a difference in the parameterization with regard to the
variance of the latent variable η. In Figure 3.8, the first indicator’s loading
λ1 is fixed to 1 so that the variance φ of the latent variable η will equal
the useful portion of the variance of the observed variable y1. In contrast,
variance-based SEM and thus ADANCO makes use of standardized con-
structs, which means that the variance of the latent variable η is fixed to
one. In exchange, the first indicator’s loading λ1 becomes a free parameter.

The latent variable is not directly observable, but only the correlational
pattern of its indicators provides indirect support for its existence. The
reflective measurement model is somewhat peculiar in the sense that the
number of dimensions underlying a reflective measurement model’s vari-
ables is one higher than the rank of the empirical correlation matrix. That
means that as an outcome of the model specification somehow an addi-
tional dimension emerges. For instance, whereas three indicators y1 to y3
span a three-dimensional space, the new orthogonal variables of the factor
model, η and ε1 to ε3, will span a four-dimensional space. Where does this
fourth dimension come from? While one could argue that this additional
dimension captures the transcendence of the theoretical concept, one could
evenly well argue that it is mere imagination. An analogy would be to draw
a three-dimensional graph on a sheet of paper. The graph itself will never
leave the two-dimensional space, but it provides a glimpse on an additional
dimension. Technically speaking, factor models are subject to factor inde-
terminacy, which means that the relationship between a common factor
and variables outside the model can have an arbitrary strength (Rigdon,
Becker, & Sarstedt, 2019). Depending on someone’s view on this, one can
complain about factor indeterminacy or appraise the transcendence of the
theoretical concept (Schönemann & Steiger, 1976).
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FIGURE 3.9. Re ective measurement in ADANCO.

3.2.3 Causal-Formative Measurement Models

Like the reflective measurement model, the causal-formative measurement
model (often just referred to as the formative measurement model) also
relies on measurement theory as the underlying auxiliary theory. However,
it assumes a different epistemic relationship between the latent variable
and its indicators: The indicators are considered as immediate causes of
the focal latent variable (Fassott & Henseler, 2015). The following equation
represents a causal-formative measurement model, where β ji indicates each
formative indicator’s contribution to η j, and ζ j is an error term:

η j =

I∑
i=1

β ji · yji + ζ j (3.4)

On first sight, this equation strongly resembles the one for a composite
model; only the measurement error on the construct level makes it distinct.
However, there is a fundamental difference between the two: Whereas
composite models assume a definitorial relationship between the compos-
ite and its components, causal-formative measurement models assume a
causal relationship between the latent variable and its indicators. In par-
ticular, cause indicators are assumed to cause the latent variable.

The measurement error on the construct level implies that the latent
variable of interest has not been perfectly measured by its formative indi-
cators. Except for rare cases when all causes can be measured (see, e.g.,
Diamantopoulos, 2006), it is indispensable to also have a reflective mea-
surement model. Otherwise it is not possible to capture the entire content of
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FIGURE 3.10. Causal-formative measurement (Henseler, 2017).

the theoretical concept (Aguirre-Urreta, Rönkkö, & Marakas, 2016). The re-
flective indicators can be observed or latent, as long as there are at least two
reflective indicators whose correlation is fully attributable to the construct
as a common cause. Figure 3.10 depicts a causal-formative measurement
model, and Figure 3.11 shows how to specify this model in ADANCO.

Whereas the older literature on variance-based SEM tended to equate
formative measurement models with composite models (see, e.g., Chin,
1998; Hwang & Takane, 2004), it is only recently that scholars started
recommending the multiple-indicators, multiple-causes (MIMIC) model
specification for causal-formative measurement in variance-based SEM, as
depicted in Figure 3.10 (Rigdon et al., 2014). For covariance-based SEM,
such types of models have been the standard for decades (see, e.g., Bagozzi,
1980).

Particular care is required if a construct with a causal-formative mea-
surement model is meant to be explained by other constructs in the model.
Researchers should then apply the litmus test of whether these other con-
structs are theorized to directly or indirectly cause the construct. In the
case of a direct causal relationship, the other constructs should be added
as additional formative indicators. In the case of an indirect causal rela-
tionship, the extant formative indicators mediate the effects of the other
constructs. Consequently, the researcher should include effects from the
other constructs on the formative indicators in the model.

3.2.4 Single-Indicator Measurement Models

If only one observed variable is available to operationalize a concept, this is
referred to as a single-indicator measurement (Diamantopoulos et al., 2012).
Single-indicator measurement has the disadvantage that if an indicator is
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FIGURE 3.11. Causal-formative measurement in ADANCO.

regarded to contain measurement error, it is not possible to determine
the amount of random measurement error in the indicator based on the
available data. Instead, one has to rely on external knowledge about the
observed variable’s reliability and to predefine it in the model specification.
Therefore, multi-indicator measurement is typically preferred over single-
indicator measurement.

Although the use of a single observed variable may sound straightfor-
ward, it has some intricacies. Firstly, the researcher may have a particular
model in mind. Secondly, the specification should anticipate whether a
covariance-based or a variance-based estimator will be employed, because
the observed variable’s potential measurement error is treated differently.
Figure 3.12 lists the various options available depending on the intended
model and estimator.

Drawing from Figure 3.12, the following guidelines can be formulated
depending on the employed estimator. If covariance-based estimators are
used, then analysts should select that specification among the six shown
in Figure 3.12 that optimally implements his or her intended model. In
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Specification for Specification for
Covariance-Based SEM Variance-Based SEM

(A) Observed variable is the variable of interest

(E)y

(B) Perfect reflective indicator of a latent variable

(E)y η

(C) Imperfect reflective indicator of a latent variable

(F)ε y η
1

(D) Causal indicator of a latent variable

(D) + (E)y η ζ
1

(E) Perfect ingredient of a composite

(E)y η

1

(F) Imperfect ingredient of a composite

(F)ε y η
1

FIGURE 3.12. Possible speci cations with single indicators depending on the intended
model and use of estimator.

contrast, if variance-based estimators are used, then analysts can always
treat the observed variable as the component of a composite. Figure 3.13
shows how single-indicator measurement can be specified in ADANCO.
In particular, note the manually set value for the construct’s reliability.

3.2.5 Categorical Variables

Like multiple regression, composite-based SEM requires metric data for
the dependent variables. Dependent variables are the indicators of the re-
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FIGURE 3.13. Single-indicator measurement in ADANCO.

flective measurement models as well as the endogenous constructs. Quasi-
metric data stemming from multi-point scales such as Likert scales or se-
mantic differential scales is also acceptable as long as the scale points can be
assumed to be equidistant. Particularly if the multi-point scales have five or
more scale points, the information loss compared to continuous variables
is not substantial (Rhemtulla, Brosseau-Liard, & Savalei, 2012).

To some extent it is also possible to include categorical variables in a
structural equation model. Categorical variables are particularly relevant
for analyzing experiments (cf. Streukens, Wetzels, Daryanto, & de Ruyter,
2010) or for control variables such as industry (cf. Braojos, Benitez, &
Llorens Montes, 2015) or ownership structure (cf. Chen, Wang, Nevo,
Benitez, & Kou, 2017).

The estimation of structural equation models with categorical vari-
ables requires either a modification of the estimation routine (cf. Betzin &
Henseler, 2005; Cantaluppi & Boari, 2016; Schuberth, Henseler, & Dijkstra,
2018b) or a special treatment of the observed categorical variables. Here,
we will focus on the latter. If a categorical variable has only two levels (i.e.,
it is dichotomous), it can serve immediately as a construct indicator. If a
categorical variable has more than two levels, it should be transformed into
as many dummy variables as there are levels. A composite model is then
formed out of all but one dummy variable. The remaining dummy variable
characterizes the reference level. Figure 3.14 illustrates how a categorical
variable “Industry” with six different levels (construction, manufacturing,
chemicals, transport, finance, others) would be included in a structural
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FIGURE 3.14. Specifying a categorical variable with six levels in a structural equation
model using ve dummy variables (the sixth level, others, serves as the reference level).

equation model. Preferably, categorical variables should only play the role
of exogenous variables in a structural equation model.

3.3 The Inner Model
The inner model (also called structural model) specifies the relationships
between the constructs. The size and significance of path relationships
are typically the focus points of the scientific endeavors pursued in em-
pirical research. The inner model consists of endogenous and exogenous
constructs as well as the (typically linear) relationships between them. En-
dogenous constructs are those constructs that are at least partially explained
by other constructs in the inner model. They are typically denoted by the
Greek letter η. In contrast, exogenous constructs are those whose values
are considered as given for the structural equation model. Their values are
determined by variables that are outside of the model’s scope. In order to
emphasize this difference, exogenous constructs are sometimes denoted by
the Greek letter ξ. In this book, they will be denoted by η as well. This
allows for a simpler mathematical notation of the inner model. In matrix
notation, the inner model takes the form of Equation 3.5 (see, for instance,
Matsueda, 2012):

η = Bη + ζ (3.5)

In this equation, η denotes the vector of constructs, B is the matrix of path
coefficients, and ζ is a vector of disturbance terms. It is also possible to
express the inner model equation by equation. For an endogenous construct
η j, the inner model equation could then look like this:

η j = β1η1 + β2η2 + · · · + β j−1η j−1 + ζ j (3.6)

Next to the path coefficients, there may be covariances between those con-
structs that play an exogenous role within the inner model and/or the
disturbance terms of the endogenous constructs. They are contained in
Ψ, the variance-covariance matrix of the inner model residuals and the
exogenous constructs.
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The inner model implies a variance-covariance matrix of constructs, Φ.
With the help of I , the identity matrix, it can be determined as follows
(Bollen, 1989b; Matsueda, 2012):

Φ̂ = (I −B)−1
Ψ (I −B′)−1 (3.7)

Variance-based SEM is usually limited to recursive inner models
(however, see Dijkstra & Henseler, 2015a, for an exception). Recursiv-
ity means that the inner model does not contain any feedback loop, and
Ψ contains only values in the main diagonal plus the covariances between
exogenous constructs. The structural equations of a recursive inner model
can be sorted in such a manner that the matrix of path coefficients B is a
strictly triangular matrix. If Ψ contains off-diagonal elements other than
covariances between exogenous constructs or if an inner model contains
causal loops, the inner model is non-recursive.

In order to facilitate a separate inspection of a structural equation
model’s outer and inner model, a two-step approach recommended by
Anderson and Gerbing (1988) has become customary. In a first step, an
inner model with all possible linear relationships between constructs is
specified, the so-called saturated model (Gefen, Straub, & Rigdon, 2011). For
the sake of ease, the relationships are modeled as covariances. Depending
on the outer model employed, an analysis of the saturated model constitutes
a CFA, a CCA (see Chapter 8), or a combination of both, i.e., a confirmatory
composite/factor analysis (CCFA). The saturated model allows an undis-
turbed assessment of the outer model, because the inner model does not
impose any constraints and hence does not induce any misfit. Once the
outer model is deemed satisfactory by the analyst, in a second step, the
actual inner model is specified. This model is called the theoretical model
(Gefen et al., 2011) or the estimated model (Henseler, Hubona, & Ray, 2016).
From a theory-testing perspective, only those estimated models are of in-
terest that have a lower number of estimated parameters than the saturated
model. Otherwise, the two models would be equivalent (they would yield
the same model-implied construct variance-covariance matrix), and model
fit tests are not informative about the inner model. Figure 3.15 illustrates
the difference between the saturated model and the estimated model at the
hand of an example.

Many different forms of relationships between constructs can be speci-
fied in the inner model: direct relationships, indirect relationships, unana-
lyzed relationships, no relationships, spurious relationships, bidirectional
relationships, nonlinear relationships, and moderated relationships. Fig-
ure 3.16 provides a graphical overview of these common forms of inner
models, enumerated from 1 to 8 .
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Example for an
Estimated Model

3 Path coefficients
+ 1 Covariance
+ 4 Variances
= 8 Parameters

Corresponding
Saturated Model

6 Covariances
+ 4 Variances
= 10 Parameters

FIGURE 3.15. Estimated model vs. saturated model.

1 Direct Relationships

Direct relationships are specified if a construct η1 is hypothesized to have a
direct linear effect on another construct η2 if all other constructs in the model
that are hypothesized to impact η2 are kept constant (i.e., ceteris paribus). A
positive direct relationship captures a hypothesis of the type “The higher η1,
the higher η2 (ceteris paribus),” and a negative direct relationship captures
a hypothesis of the type “The higher η1, the lower η2 (ceteris paribus).”
Direct relationships correspond to a single element of the path coefficient
matrix B.

All constructs affected by direct relationships, i.e., all endogenous con-
structs, are assumed to have disturbance terms. In variance-based SEM,
these disturbance terms are taken into account automatically and therefore
do not have to be explicitly specified. In contrast, many implementations
of covariance-based SEM require the explicit specification of disturbance
terms.

2 Indirect Relationship

Indirect relationships entail that a construct η1 does not directly influence an
endogenous construct η3, but only indirectly via another construct η2. The
latter plays the role of a mediator variable (or simply mediator). Mediation
analysis covers this type of inner model. It is explained in Chapter 9.
Indirect relationships encompass a set of at least two elements of the path
coefficient matrix B.
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1 Direct
Relationship

η1 η2

2 Indirect (or Mediated)
Relationship

η1 η3

η2

3 Unanalyzed
Relationship

η1 η2

4 No
Relationship

η1 η2

5 Spurious
Relationship

η1 η2

η3

6 Bidirectional
Relationship

η1 η2

7 Quadratic
Relationship

η1 η2

8 Moderated
Relationship

η1 η2

η3

FIGURE 3.16. Examples of relationships between constructs.
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3 Unanalyzed Relationship

In the case of unanalyzed relationships, a model allows for concomitant
variation between two constructs η1 and η2, but makes no effort to ex-
plain the underlying reason why the two constructs covary. Unanalyzed
relationships correspond to a single element of Ψ, the variance-covariance
matrix of the inner model disturbance terms and the exogenous constructs.
That means that unanalyzed relationships can only be specified between
exogenous constructs and/or disturbance terms. An endogenous variable
cannot have unanalyzed relationships; instead, its disturbance term should
be specified to have the unanalyzed relationship.

Most software implementations of variance-based SEM do not allow to
explicitly specify unanalyzed relationships. Only the covariances between
exogenous constructs are automatically specified. In contrast, most soft-
ware implementations of covariance-based SEM allow one to specify other
unanalyzed relationships in an inner model.

4 No Relationship

If two constructs η1 and η2 are specified to have no relationship and at
least one of them is endogenous, then the corresponding elements of the
path coefficient matrix B are zero. If both constructs are exogenous, the
graphical model 4 depicted in Figure 3.16 is decoded differently depending
on the type of SEM employed. If a model is specified for covariance-based
SEM, “no relationship” between two exogenous constructs means that these
two constructs are not allowed to covary, and the corresponding element
of Ψ is fixed to zero. In contrast, if a model is specified for variance-based
SEM, “no relationship” between two exogenous constructs means that this
relation is unanalyzed. Consequently, the corresponding element of Ψ is
freely estimated.

5 Spurious Relationship

Two constructs η1 and η2 have a spurious relationship if they exhibit con-
comitant variation although they do not cause each other. Instead, they
share a common cause η3, which is responsible for the shared variance of
η1 and η2. If a researcher specified a direct effect from η1 to η2 without
accounting for η3, he or she would observe a spurious effect of η1 on η2.

6 Bidirectional Relationship

A bidirectional relationship means that a construct η1 simultaneously af-
fects and is affected by a construct η2. By definition, both η1 and η2 are
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endogenous constructs. Although the visual representation of a bidirec-
tional relationship may resemble an unanalyzed relationship (both have
two arrowheads), their meaning is thus fundamentally different.

In addition to the two path coefficients, which constitute elements of
the path coefficient matrix B, it is indispensable to free the covariance be-
tween the two endogenous variable’s disturbance terms. This corresponds
to a single element of Ψ. Inner models with one or more bidirectional re-
lationships are non-recursive. In most implementations of variance-based
SEM it is not possible to specify inner models with a bidirectional relation-
ship; the only exception is cSEM. Instead, it may be advantageous to rely
on covariance-based SEM (see, e.g., Benitez, Ray, & Henseler, 2018, for a
combined use of variance- and covariance-based SEM).

7 Quadratic Relationship

In principle, it is possible for inner models to leave the comfortable realm
of linear relations. In many cases, simple polynomial extensions can
help model several forms of nonlinearity (see Dijkstra & Henseler, 2011;
Henseler et al., 2012, and Section 11.5). Already the simplest polynomial
extension, a quadratic term, permits to model various nonlinear patterns.
Section 11.5 provides a deeper discussion of nonlinear effects.

8 Moderated Relationship

A particular form of nonlinearity is moderation (also called “interaction”).
One refers to an interaction effect if a focal effect is not constant, but depends
on the level of another construct in the model. Several approaches for mod-
eling interaction effects using composite-based SEM have been proposed
(e.g., Dijkstra & Schermelleh-Engel, 2014; Fassott et al., 2016; Henseler &
Chin, 2010; Henseler & Fassott, 2010). Chapter 11 explains how to model
moderated relationships.

3.4 Software Tutorial: Model Speci cation

The task of this tutorial is to specify a model that is meant to answer the
question to what extent agricultural inequality and industrial development
impact political stability. The dataset was initially compiled by Russett
(1964), discussed and reprinted by Gifi (1990), and partially transformed
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by Tenenhaus and Tenenhaus (2011).4 For 47 countries, it contains the
following variables5:

• Indicators of agricultural inequality:

– gini : The Gini index of concentration.

– farm: The percentage of landholders who collectively occupy
one-half of all the agricultural land (starting with the farmers
with the smallest plots of land and working toward the largest).

– rent : The percentage of the total number of farms that rent all
their land. Transformation: ln (# + 1).

• Indicators of industrial development:

– gnpr: The 1955 gross national product per capita in U.S. dollars.
Transformation: ln (#).

– labo: The percentage of the labor force employed in agriculture.
Transformation: ln (#).

• Indicators of political stability:

– inst : Instability of personnel based on the term of office of the
chief executive. Transformation: exp (# − 16.3).

– ecks: The total number of politically motivated violent inci-
dents, from plots to protracted guerrilla warfare. Transforma-
tion: ln (# + 1).

– deat : The number of people killed as a result of internal group
violence per 1,000,000 people. Transformation: ln (# + 1).

– stab : One if the country has a stable democracy, and zero other-
wise.

– dict : One if the country experiences a dictatorship, and zero
otherwise.

The raw data as well as the ADANCO project file can be downloaded
from the companion website:

https://www.guilford.com/henseler-materials

4For more details on the genesis of the data see Russett (1964); for more details on the data
imputation see Tenenhaus and Tenenhaus (2011); for more details on the data transforma-
tions see Tenenhaus and Tenenhaus (2011) and Gifi (1990).
5In the transformation, # denotes the original variable. Three missing values were imputed
with values suggested by Tenenhaus and Tenenhaus (2011).
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FIGURE 3.17. Specifying structural equation models in ADANCO: The model panel.

3.4.1 Specifying Structural Equation Models in ADANCO

The data file russett.xlsx can be imported as described in Section 1.4
(page 19). Once ADANCO has recognized the data, it shows the model
panel as depicted in Figure 3.17.

When ADANCO creates a new project, the first construct will always
be drawn automatically. By double-clicking on constructs one can rename
constructs. Alternatively, one can mark constructs by a single mouse-click
and press F2. We can give this construct the name Political instability.

In order to assign indicators to a construct, one selects one or more in-
dicators from the list of indicators (eventually pressing the SHIFT or CTRL
key to select more than one indicator at once) and moves them through
drag and drop onto the intended construct. To move indicators, mark one
indicator of a construct and move it keeping the mouse button pressed. It
will move together with all other indicators of that construct. In the current
case, we should select the indicators inst, ecks, deat, stab, and dict and
assign them to the construct Political instability. Once all indicators of a
construct are assigned, one should define one dominant indicator. The
dominant indicator should be a variable of which the researcher knows
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with sufficient certainty that the correlation between the indicator and the
construct should be positive (see also Chapter 4).

Researchers should make a conscious choice of the auxiliary theory
employed for each construct. Shall a construct be modeled as a latent
variable or as an emergent variable? Per default, constructs will be modeled
as latent variables, the dominant type of constructs in social sciences. If one
would like to model a construct as an emergent variable, one should mark
this construct by a single mouse click and change the type of construct in the
upper left of the shell to “emergent variable.” The properties of a marked
construct can also be changed in the upper left of the shell. Alternatively,
right-clicking on a construct opens a context menu, which permits one to
change the construct properties. In line with Tenenhaus and Tenenhaus
(2011), we propose to specify Political instability as an emergent variable.
As a consequence of this specification, the construct will obtain the shape
of a hexagon and the arrows of this construct’s outer model will point from
the indicators to the construct.

An even quicker way to simultaneously specify constructs and assign
indicators to them is to select a block of indicators and move them through
drag and drop onto a free place in the model panel. ADANCO will then
create a new latent variable, assign the selected indicator to it, and name
the construct according to those initial letters that all of its indicators have
in common. We use this mechanism twice. Firstly, we select the indicators
gini, farm, and rent and drop them onto the model panel. We rename the
New Construct to Agricultural inequality, and change its type to “emergent
variable.” Secondly, we proceed in the same way with the remaining
indicators, i.e., gnpr and labo. We rename the New Construct to Industrial
development, and change its type to “emergent variable,” too.

In order to draw paths, i.e., arrows of the inner model, one must click
on the source of the arrow (i.e., the independent variable), keep the mouse
button pressed, and release it on the target of the arrow (i.e., the dependent
variable). Please note that to draw arrows of the inner model, all constructs
must be unmarked.

From Version 2.2 on, ADANCO supports labels for structural paths. If
one right-clicks on a structural path, a context menu provides the oppor-
tunity to assign a label. For instance, if a certain effect corresponds to the
first hypothesis of a scientific paper, it would make sense to call this effect
“H1.”

It is a good practice of conducting statistical analyses to document what
has been done. ADANCO facilitates this provision of transparency in two
ways. Firstly, analysts can specify a model title by right-clicking into the
model panel and choosing the option “Add title.” Secondly, analysts can
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FIGURE 3.18. Specifying structural equation models in ADANCO: A model based on
Russett (1964).

add comments by right-clicking into the model panel and choosing the
option “Add comment.” While in the heat of the moment adding titles and
comments may appear like a waste of time, analysts will usually embrace
titles and comments once they reopen a past analysis after a long time
again, and this additional information helps to recapture what the analysis
was all about.

To delete objects of the model such as constructs, indicators, paths,
title, or comments, simply mark the respective object and press DELETE.
Alternatively, one can right-click on the object and select the “Delete” option
in the context menu.

As soon as a valid structural equation model has been specified,
ADANCO will show some selected estimation results: loadings for the
reflective measurement models, weights for the composite models, coeffi-
cients of determination (R2 values) for all endogenous constructs, and the
path coefficients. The final model is shown in Figure 3.18.

Defining Parameters

ADANCO 2.3.1 allows one to define additional parameters. These param-
eters are derived from a pair of existing parameters that are exposed to an
arithmetic function such as summation, subtraction, multiplication, or di-
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FIGURE 3.19. ADANCO provides the option to de ne parameters.

vision. The existing parameters can be path coefficients or already defined
parameters. This permits a cascaded definition of new parameters. For
instance, to define a new parameter Q := β1 · β3 + β2 · β4, one could define
two auxiliary parameters Q1 := β1 · β3 and Q2 := β2 · β4 and use them to
finally define Q := Q1 + Q2. Figure 3.19 shows how a parameter sum is
defined using the corresponding ADANCO dialogue window.

Derived parameters can be useful to answer specific research questions.
Particularly four applications are worth mentioning: parameter sums, pa-
rameter differences, indirect relationships, and parameter ratios.

A parameter sum is a relevant piece of information when a researcher
expects two effects to cancel each other out. The hypothesis that two
effects have the same magnitude but the opposite sign is equivalent to
the hypothesis that the sum of two effects is equal to zero. For instance,
Eggert, Henseler, and Hollmann (2012) applied a parameter sum in order
to test a structural equation model derived from balance theory (Heider,
1958). They formulated the hypothesis that the difference in loyalty toward
two parties determines to which party someone will remain loyal if the
circumstances no longer allow him or her to stay loyal to both parties
simultaneously.

Parameter differences are relevant if an analyst wants to compare pa-
rameters, e.g., as part of a ranking. According to Rodríguez-Entrena, Schu-
berth, and Gelhard (2018, p. 59), the “difference between two parameter
estimates might be particularly valuable when model estimates are pro-
posed to guide decision makers in handling budget constraints (e.g., se-
lection of marketing strategies, success factors or investment in alternative
instruments of innovation, process, and product, etc.).” Sometimes, the
finding that one effect is significantly different from zero whereas another
one is not may inspire analysts to conclude that the two effects differ from



Model Speci cation 69

each other. However, such a conclusion would be premature. As Gelman
and Stern (2006, p. 328) emphasize, “the difference between ‘significant’
and ‘not significant’ is not itself statistically significant.” Instead, analysts
should test the difference between the two effects. If the difference between
the two effects is statistically different from zero, there is empirical support
that one effect has a different magnitude than the other one.

Parameter products play an important role as parameters for indirect
relationships. Indirect relationships form the core of mediation analysis,
which is explained in Chapter 9.

Parameter ratios are useful if an analyst would like to express a parame-
ter in relative terms to some other parameter(s). An example of a parameter
ratio is the variance accounted for (VAF), a coefficient to quantify comple-
mentary mediation (see Chapter 9).

Limitations and Implicit Specifications

Some model specifications are made automatically and cannot be manu-
ally changed: Measurement errors are assumed to be uncorrelated with all
other variables and errors in the model; disturbance terms are assumed to
be orthogonal to their predictor variables and to each other; correlations
between exogenous variables are free. Because these specifications hold
across models, it has become customary not to draw measurement errors
and their correlations in PLS path models. As a consequence, measure-
ment models in variance-based SEM may appear less detailed than those
of covariance-based SEM; however, some specifications are implicit and
are simply not visualized. Since ADANCO 2.3.1 does not allow either con-
straining or freeing factor models’ error correlations, these model elements
are not drawn. Inner models must be recursive, i.e., there should be no loop.
In ADANCO 2.3.1, inner models can consist of several unconnected pieces,
i.e., constructs need not be connected with other constructs. However, in
order to facilitate identification, it is strongly recommended to have each
construct be connected at least with one other construct (see Chapter 4).
Finally, construct names must be unique.

3.4.2 Specifying Structural Equation Models in cSEM

Model specification in cSEMmakes use of a syntax that was first introduced
by the lavaan package (Rosseel, 2012). It employs four operators:

=~ serves to specify reflective measurement models; it assigns observed
variables to a latent variable.

<~ serves to specify composite models; it assigns observed variables
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to an emergent variable.

~ serves to specify the inner model; it defines on which independent
variables a construct shall be regressed.

~~ serves to specify correlations among measurement errors within a
block of indicators.

The model of Russett can then be specified as follows:

model_Russett = ' # Specify the composite models

AgrIneq <~ gini + farm + rent

IndDev <~ gnpr + labo

PolInst <~ inst + ecks + deat + stab + dict

# Specify the relation among the

# emergent variables

PolInst ~ AgrIneq + IndDev

'

To load the dataset, the following code snippet can be used (eventually, the
path needs to be adjusted):

Russett <- as.data.frame(readxl::read_excel("C:/Russett.

xlsx"))

To estimate the model, we load the cSEM package and employ its csem()
function:

library(cSEM)

## Attaching package: 'cSEM'

## The following object is masked from 'package:stats':

##

## predict

out <- csem(.data = Russett, .model = model_Russett,

# To reproduce the ADANCO results

.PLS_weight_scheme_inner = 'factorial',

.tolerance = 1e-06

)

Finally, we retrieve the results:
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summarize(out)

## -------------------------------------------------------------------------

## ------------------------------- Overview --------------------------------

##

## General information:

## ------------------------

## Estimation status = Ok

## Number of observations = 47

## Weight estimator = PLS-PM

## Inner weighting scheme = factorial

## Type of indicator correlation = Pearson

## Path model estimator = OLS

## Second order approach = NA

## Type of path model = Linear

## Disattenuated = No

##

## Construct details:

## ------------------

## Name Modeled as Order Mode

##

## AgrIneq Composite First order modeB

## IndDev Composite First order modeB

## PolInst Composite First order modeB

##

## ------------------------------- Estimates -------------------------------

##

## Estimated path coefficients:

## ============================

## Path Estimate Std. error t-stat. p-value

## PolInst ~ AgrIneq 0.3379 NA NA NA

## PolInst ~ IndDev 0.5926 NA NA NA

##

## Estimated loadings:

## ===================

## Loading Estimate Std. error t-stat. p-value

## AgrIneq =~ gini 0.5365 NA NA NA

## AgrIneq =~ farm 0.6715 NA NA NA

## AgrIneq =~ rent -0.2644 NA NA NA

## IndDev =~ gnpr -0.9094 NA NA NA

## IndDev =~ labo 0.9824 NA NA NA

## PolInst =~ inst 0.1923 NA NA NA

## PolInst =~ ecks 0.6310 NA NA NA

## PolInst =~ deat 0.5240 NA NA NA

## PolInst =~ stab -0.9685 NA NA NA

## PolInst =~ dict 0.7395 NA NA NA

##

## Estimated weights:
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## ==================

## Weights Estimate Std. error t-stat. p-value

## AgrIneq <~ gini -1.0570 NA NA NA

## AgrIneq <~ farm 2.0241 NA NA NA

## AgrIneq <~ rent -0.7859 NA NA NA

## IndDev <~ gnpr -0.3228 NA NA NA

## IndDev <~ labo 0.7191 NA NA NA

## PolInst <~ inst -0.1337 NA NA NA

## PolInst <~ ecks 0.1287 NA NA NA

## PolInst <~ deat -0.0854 NA NA NA

## PolInst <~ stab -0.8337 NA NA NA

## PolInst <~ dict 0.2459 NA NA NA

##

## Estimated construct correlations:

## =================================

## Correlation Estimate Std. error t-stat. p-value

## AgrIneq ~~ IndDev 0.4875 NA NA NA

##

## Estimated indicator correlations:

## =================================

## Correlation Estimate Std. error t-stat. p-value

## gini ~~ farm 0.9376 NA NA NA

## gini ~~ rent 0.3873 NA NA NA

## farm ~~ rent 0.4599 NA NA NA

## gnpr ~~ labo -0.8156 NA NA NA

## inst ~~ ecks 0.3261 NA NA NA

## inst ~~ deat 0.0835 NA NA NA

## inst ~~ stab -0.3434 NA NA NA

## inst ~~ dict 0.0198 NA NA NA

## ecks ~~ deat 0.6277 NA NA NA

## ecks ~~ stab -0.6034 NA NA NA

## ecks ~~ dict 0.3920 NA NA NA

## deat ~~ stab -0.4905 NA NA NA

## deat ~~ dict 0.5321 NA NA NA

## stab ~~ dict -0.5893 NA NA NA

##

## -------------------------------- Effects --------------------------------

##

## Estimated total effects:

## ========================

## Total effect Estimate Std. error t-stat. p-value

## PolInst ~ AgrIneq 0.3379 NA NA NA

## PolInst ~ IndDev 0.5926 NA NA NA

##

## Estimated indirect effects:

## ===========================

## Indirect effect Estimate Std. error t-stat. p-value

## NA NA NA NA NA

##

## -------------------------------------------------------------------------
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