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Bayesian Variable Selection and
Sparsity

10.1 Introduction

Over the past three decades a great deal of attention has been paid to the problem
of variable selection. Specifically, in considering a relatively long list of predictors
such as shown in the linear regression example in Chapter 5, concern focuses on
the trade-off between the bias that could occur if important variables are omitted
from the model and the variance that could occur from overfitting the model
with variables that do not play a very important role in the prediction of the
outcome. Variable selection methods are designed to yield so-called sparse models
that contain, more or less, the important predictors of the outcome.

This chapter concentrates on Bayesian methods for variable selection, although
the two methods discussed here can be implemented in a frequentist framework
and the results are often comparable. However, as pointed out by van Erp (2020),
there are a number of important benefits in adopting a Bayesian framework for
variable selection. First, as we will see, variable selection can be easily imple-
mented through the priors placed on model parameters, and these are generically
referred to as shrinkage priors or sparsity-inducing priors. Shrinkage priors can
be specified to shrink small coefficients toward zero while allowing large coeffi-
cients to remain large. Sparsity is induced by specifying certain hyperparameters
within the priors set on the model parameters. These hyperparameters are defined
through their own hyperprior distributions. The hyperpriors can be manipulated
to increase or decrease the amount of shrinkage in the estimated effects.

The second benefit of adopting a Bayesian perspective to variable selection is
that the penalty term is estimated in the same step as the other model parameters.
In other words, the penalty term is built into the model estimation process because
it is incorporated directly into the model via a prior. In turn, that prior can be
specified in a flexible manner through different settings, controlling for the degree
of shrinkage as the researcher sees fit.

Finally, the third benefit of estimating Bayesian penalty terms is that many dif-
ferent forms of penalties can be implemented. There are frequentist-based penalty
techniques, such as the ridge and lasso methods described, which have their
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180 Bayesian Statistics for the Social Sciences

Bayesian counterparts. In addition, there are methods that are strictly Bayesian
such as the spike-and-slab prior and the horseshoe prior (see van de Schoot et al.,
2021, for more information on these priors.).

In this chapter, we focus on Bayesian variable selection methods in the context
of linear models and consider four methods for variable selection: (1) the ridge
prior (A. E. Hoerl & Kennard, 1970; Hsiang, 1975), (2) lasso prior, (Park & Casella,
2008; Tibshirani, 1996), (3) horseshoe prior (Carvalho, Polson, & Scott, 2010), and
(4) regularized horseshoe prior (Piironen & Vehtari, 2017). The first two can also
be implemented in a frequentist setting, but we will concentrate on their Bayesian
counterparts. Although there are many more that could be considered (see, e.g.,
Hastie, Tibshirani, & Friedman, 2009), these methods are chosen to highlight the
issues of variable selection and lead naturally into our discussion of Bayesian
model averaging in Chapter 11. A representation of the different shrinkage prior
distributions is given below in Figure 10.1, and a comparison of the performance
of these priors will be given in Section 10.6 below.

FIGURE 10.1. Four types of shrinkage priors. Top row left: Ridge prior N(0,1); top row
right: Laplace prior with location=0, scale=4; bottom row left: Horseshoe prior with λp ∼
C+(0,1) and τ ∼ C+(0,1); bottom row right: Regularized horseshoe prior.
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Bayesian Variable Selection and Sparsity 181

10.2 The Ridge Prior

As a regularization method, ridge regression (A. E. Hoerl & Kennard, 1970;
R. W. Hoerl, 1985) aims to yield a parsimonious regularized regression model
in the presence of highly correlated variables. The frequentist ridge estimator of
β, denoted as βridge is obtained by solving the minimization

βridge = argmin
β

(
y′y − β′x′x

)
+ λ

P∑
p=1

β2
p (10.1)

where λ ≥ 0 is a tuning parameter that controls the degree of regularization and
the term λ

∑P
p=1 β

2
p) is referred to as an L2 − norm. When λ = 0, we have ordinary

least squares, and when λ = ∞, we obtain βridge = 0. With ridge regression it can
be seen that a large value of λ can lead to very heavy penalization.

Hsiang (1975) showed that if β has a mean of zero and covariance matrix
Σ = (σ2/λ)I, and if ϵ ∼ N(0, σ2

ϵI), then the posterior mean of β is (x′x + λI)−1x′y,
which is an alternative specification of the ridge estimator. Hsiang (1975) also
notes that if weakly informative or informative priors are placed on βp, then the
interpretation of the posterior mean of β as the ridge estimate is no longer valid.

In Bayesian ridge regression, the penalty term (λ) is captured through normally
distributed independent priors placed on the regression slope parameters. These
normal priors have mean hyperparameter values fixed at zero in order to control
shrinkage toward zero. The variance hyperparameter is typically rescaled to be
in standard deviation form and is set to define the degree of spread that the
distribution exhibits. Note that we specify a C+(0,1) distribution for the residual
standard deviation, but other priors could be specified as well. A representation
of the ridge prior is given in the top left of Figure 10.1.

The specification of the ridge prior for the example that follows can be written
as

β j|λ, σ
2
∼ N

(
0,
σ2

λ

)
, for j = 1, ..., p (10.2)

where, for the following example, we assume σ2 = 1 and we set λ = 1, inducing
an N(0, 1) prior on each regression coefficient. Note, however, that larger values
of λ induce greater penalties insofar as the variance of the regression coefficients
become smaller.

Example 10.1: Bayesian Ridge Regression

Before beginning, it is necessary when using any of the sparsity-inducing pri-
ors that the data be standardized beforehand. Standardizing the data beforehand
provides a constant value that all parameters can be shrunk toward, namely, zero.

For our example of Bayesian ridge regression, we return to the Bayesian linear
regression model in Chapter 5, using data from PISA 2018 to estimate a model
of reading proficiency. For this example, we take a random sample of 100 ob-
servations to demonstrate the differences in the amount of shrinkage across the
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182 Bayesian Statistics for the Social Sciences

methods. Preliminary analyses with the full sample reveal virtually no differences
among the methods, as would be expected.1

In what follows, only the data and parameter blocks are provided insofar as
the remaining code is the same as that in Example 5.1 and also across all other
methods. For the ridge priors, we give anN(0, 1) prior to the regression coefficients
and aC+(0,1) distribution to the standard deviation of the residuals. The likelihood
follows the specification of the priors.

RidgeString = "

data {

int<lower=0> n;

vector [n] readscore;

vector [n] Female; vector [n] ESCS;

vector [n] METASUM; vector [n] PERFEED;

vector [n] JOYREAD; vector [n] MASTGOAL;

vector [n] ADAPTIVITY; vector [n] TEACHINT;

vector [n] SCREADDIFF; vector [n] SCREADCOMP;

}

parameters {

real alpha;

real beta1; real beta6;

real beta2; real beta7;

real beta3; real beta8;

real beta4; real beta9;

real beta5; real beta10;

real<lower=0> sigma;

}

model {

real mu[n];

for (i in 1:n)

mu[i] = alpha + beta1*Female[i] + beta2*ESCS[i] + beta3*METASUM[i]

+ beta4*PERFEED[i] + beta5*JOYREAD[i] + beta6*MASTGOAL[i]

+ beta7*ADAPTIVITY[i] + beta8*TEACHINT[i]

+ beta9*SCREADDIFF[i] + beta10*SCREADCOMP[i] ;

// Priors

alpha ˜ normal(0, 1);

beta1 ˜ normal(0, 1); beta6 ˜ normal(0, 1);

beta2 ˜ normal(0, 1); beta7 ˜ normal(0, 1);

beta3 ˜ normal(0, 1); beta8 ˜ normal(0, 1);

beta4 ˜ normal(0, 1); beta9 ˜ normal(0, 1);

beta5 ˜ normal(0, 1); beta10 ˜ normal(0, 1);

sigma ˜ cauchy(0,1);

1We do not sample students within schools, thus this example should not be taken as a
serious model of reading proficiency.
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Bayesian Variable Selection and Sparsity 183

// Likelihood

readscore ˜ normal(mu, sigma);

}

The important points to note about this code is that, first, the data should be
standardized before estimation. Second, note that the specification of the N(0, 1)
priors induces the ridge shrinkage in the sense that regression coefficients that
are close to zero will be shrunk toward the prior mean of zero, whereas large
coefficients should be relatively unaffected by the prior. Again, as noted above,
the extent of the shrinkage is determined by the value of λ.

10.3 The Lasso Prior

A drawback of ridge regression is that it does not improve parsimony in the sense
that all of the variables still remain in the model after penalization (Zou & Hastie,
2005). A method that appears similar to ridge regression but is principally different
in terms as yielding a parsimonious model is the least absolute shrinkage and selection
operator or LASSO. The frequentist lasso involves solving the expression

βlasso = argmin
β

(
y′y − β′x′x

)
+ λ

P∑
p=1

|βp| (10.3)

The term λ
∑P

p=1 |βp| is referred to as an L1 − norm penalty, which allows less
important coefficients to be set to zero, and thus the lasso provides for both
shrinkage and variable selection.

Bayesian lasso penalization uses a different shrinkage prior as compared to the
Bayesian ridge approach. Specifically, Tibshirani (1996) showed that |βp| is propor-
tional to minus the log-density of the double exponential (Laplace) distribution.
That is, the lasso estimate of the posterior mode of βp can be obtained by using the
prior

p(βp) =
1

2τ
exp

(
−
|βp|

τ

)
(10.4)

where τ = 1/λ.
The top right of Figure 10.1 shows the double exponential distribution. We see

that the double exponential distribution is ideal because it peaks at zero, which
shrinks small coefficients toward zero. However, the double exponential can be
set to have thick tails (in both directions), allowing the larger coefficients to remain
large. Given that the distribution is centered at zero to control shrinkage toward
zero, the mean hyperparameter setting is fixed to zero. The scale, or dispersion,
of the double exponential distribution is the hyperparameter that researchers can
alter when implementing the shrinkage. This defines the amount of spread and
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184 Bayesian Statistics for the Social Sciences

the thickness of the tails, which controls the degree of shrinkage in coefficients.
Again, a C+(0,1) prior can be specified on the standard deviation of the residuals,
if desired.

Although the ridge and lasso approaches are similarly implemented in
the Bayesian framework, these techniques can produce different amounts of
shrinkage depending on the hyperparameter settings. That is, the lasso approach
can result in more shrinkage for the small estimates, but less shrinkage for the
large estimates. This result is a function of the double exponential distribution
implemented in the lasso approach. The double exponential distribution is more
peaked around zero and it has heavier tails compared to the normal distribution
used in the ridge approach. Regardless of the approach implemented, Bayesian
penalization can be a useful tool when attempting to avoid overfitting a complex
model to small samples. Indeed, the lasso is simultaneously a shrinkage and
variable selection method. In addition, these approaches further highlight
the modeling flexibility that Bayesian methods provide through the flexible
implementation of priors. Next follows the specification for the lasso priors.

Example 10.2: Bayesian Lasso Regression

Below we show the Stan code for the lasso prior. Note in the parameter block
the use of the double exponential(0,1) distribution to induce the lasso. Also, notice
that we do not attempt to induce as much shrinkage in the intercept alpha.

modelString = "

data {

int<lower=0> n;

vector [n] readscore;

vector [n] Female; vector [n] ESCS;

vector [n] METASUM; vector [n] PERFEED;

vector [n] JOYREAD; vector [n] MASTGOAL;

vector [n] ADAPTIVITY; vector [n] TEACHINT;

vector [n] SCREADDIFF; vector [n] SCREADCOMP;

}

model {

real mu[n];

for (i in 1:n)

mu[i] = alpha + beta1*Female[i] + beta2*ESCS[i] +

beta3*METASUM[i]

+ beta4*PERFEED[i] + beta5*JOYREAD[i] + beta6*MASTGOAL[i]

+ beta7*ADAPTIVITY[i] + beta8*TEACHINT[i]

+ beta9*SCREADDIFF[i] + beta10*SCREADCOMP[i] ;

// Priors

alpha ˜ normal(0, 1);

beta1 ˜ double_exponential(0, 1); beta6 ˜ double_exponential(0, 1);
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Bayesian Variable Selection and Sparsity 185

beta2 ˜ double_exponential(0, 1); beta7 ˜ double_exponential(0, 1);

beta3 ˜ double_exponential(0, 1); beta8 ˜ double_exponential(0, 1);

beta4 ˜ double_exponential(0, 1); beta9 ˜ double_exponential(0, 1);

beta5 ˜ double_exponential(0, 1); beta10 ˜ double_exponential(0, 1);

sigma ˜ cauchy(0,1);

// Likelihood

readscore ˜ normal(mu, sigma);

}

The lasso is not without limitations (see van Erp, Oberski, & Mulder, 2019).
First, when the number of variables p are greater than the sample size n (which
we might encounter in “big data” problems), the model selection algorithm will
stop at n because the model will no longer be identified. Second, if there are
groups of variables that are highly pairwise correlated, the lasso will select only
one of the variables from that group rather arbitrarily. Third, when n > p, which
is the motivating case in this chapter, and when variables are highly correlated,
it has been shown that ridge regression will outperform the lasso with respect to
predictive performance.

10.4 The Horseshoe Prior

An alternative to the lasso prior which has gained popularity in the Bayesian
literature is the so-called horseshoe prior. The horseshoe prior belongs to a class
of so-called global-local shrinkage priors.2 Following the notation in Betancourt
(2018a), the horseshoe prior can be specified as follows:

βp ∼ N(0, τλp) (10.5a)
λp ∼ C

+(0, 1) (10.5b)
τ ∼ C+(0, τ0) (10.5c)

where τ0 is a hyperparameter that controls the behavior of the global shrinkage
prior τ. The intuition behind the horseshoe prior is that the global parameter τ
shrinks all of the coefficients toward zero while the local parameter λp allows
some large coefficients to bypass the shrinkage. The horseshoe prior can be seen
in the bottom row left of Figure 10.1

Example 10.3: The Horseshoe Prior

2The horseshoe prior gets its name from the fact that under certain conditions, the proba-
bility distribution of the shrinkage parameter associated with horseshoe prior reduces to a
Beta( 1

2 ,
1
2 ) distribution, which has the shape of a horseshoe.
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186 Bayesian Statistics for the Social Sciences

For this example, we specify λp as the local prior for each of the p regression
coefficients and τ as the global prior in the Stan parameter block, where we set
τ0 = 1. Note that in the Stan model block, the regression coefficients have mean
zero and a scale mixture τλp.

Horseshoe = "

data {

int<lower=1> n; // Number of data

int<lower=1> p; // Number of covariates

matrix[n,p] X;

real readscore[n];

}

parameters {

vector[p] beta;

vector<lower=0>[p] lambda; // Local prior

real<lower=0> tau; // Global prior

real alpha;

real<lower=0> sigma;

}

model {

beta ˜ normal(0, tau * lambda); // Scale mixture

tau ˜ cauchy(0, 1);

lambda ˜ cauchy(0, 1);

alpha ˜ normal(0, 1);

sigma ˜ cauchy(0, 1);

readscore ˜ normal(alpha + X * beta, sigma);

}

// For posterior predictive checking and loo cross-validation

generated quantities {

vector[n] readscore_rep;

vector[n] log_lik;

for (i in 1:n) {

readscore_rep[i] = normal_rng(alpha + X[i,:] * beta, sigma);

log_lik[i] = normal_lpdf(readscore[i] | alpha + X[i,:]

* beta, sigma);

}

}

"
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Bayesian Variable Selection and Sparsity 187

10.5 Regularized Horseshoe Prior

A limitation of the conventional horseshoe prior relates to the regularization of the
large coefficients. Specifically, it is still the case that large coefficients can transcend
the global scale set by τ0, with the impact being that the posteriors of these large
coefficients can become quite diffused, particularly in the case of weakly-identified
coefficients (Betancourt, 2018a). To remedy this issue, Piironen and Vehtari (2017)
proposed a regularized version of the horseshoe prior (also known as the Finnish
horseshoe prior). Following the notation used in Betancourt (2018a),

βp ∼ N(0, τλ̃p) (10.6a)

λ̃p =
cλp√

c2 + τ2λ2
p

(10.6b)

λp ∼ C
+(0, 1), (10.6c)

c2
∼ inv-gamma

(
ν
2
,
ν
2

s2
)

(10.6d)

τ ∼ C+(0, τ0) (10.6e)

where s2 is the variance for each of the p predictor variables. As pointed out by
Piironen and Vehtari (2017), those variables that have large variances would be
considered more relevant a priori, and while it is possible to provide predictor
specific values for s2, generally we scale the variables ahead of time so that s2 =
1. Finally, c2 is the slab width which controls the size of the large regression
coefficients.

To gain an intuition of the regularized horseshoe, first note that the form
of Equation (10.6a) is quite similar to the horseshoe prior, however λ̃p places a
control on the size of the coefficients by introducing a slab width c2 in Equation
(10.6b). Following Piironen and Vehtari (2017), notice that if τ2λ2

p ≪ c2, then this
means that βp is close to zero and λ̃p → λp, which is the original horseshoe in
Section 10.4. However, if τ2λ2

p ≫ c2, then λ̃p → c2/τ2 and the prior begins to
approach the N(0, c2), where, again, the choice of c2 controls the size of the large
coefficients. Because c2 is a slab width that might not be well known, it follows
that it should be given a prior distribution, and Piironen and Vehtari (2017)
recommend the inverse-gamma distribution in Equation (10.6d), which induces a
relatively non-informative Student’s - t slab when coefficients are far from zero.

Example: 10.4: The Regularized Horseshoe Prior

In setting up Stan first recall that as with all of the methods for sparsity, the
data are first standardized to have a mean of zero and standard deviation of
one. Also, recall that Stan works with standard deviations and not variances or
precisions. To start, for the regularized horseshoe we first need to indicate our
belief regarding the number of large coefficients. This is required because the
global scale parameter τ0 inside the transformed parameter block is a function of
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188 Bayesian Statistics for the Social Sciences

the number of large coefficients assumed by the researcher ahead of analyzing the
data. In the transformed data block, this is indicated by the line real p0=5;.

PISA18sampleScale <- read.csv(file.choose(),header=T)

n <- nrow(PISA18sampleScale)

X <- PISA18sampleScale[,2:11]

readscore <- PISA18sampleScale[,1]

p <- ncol(X)

data.list <- list(n=n, p=p, X=X, readscore=readscore)

# Stan code adapted and modified from from Betacourt 2018 #

modelString = "

data {

int <lower=1> n; // number of observations

int <lower=1> p; // number of predictors

real readscore[n]; // outcome

matrix[n,p] X; // inputs

}

transformed data {

real p0 = 5;

}

Next, in the parameters block, we define the parameters of the regularized horse-
shoe given in Equations (10.6a) - (10.6e).

parameters {

vector[p] beta;

vector<lower=0>[p] lambda;

real<lower=0> c2;

real<lower=0> tau;

real alpha;

real<lower=0> sigma;

}

In the transformed parameters we specify tau0 in line with Betancourt (2018a) and
we write λ̃ as in Equation (10.6d).
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Bayesian Variable Selection and Sparsity 189

transformed parameters {

real tau0 = (p0 / (p - p0)) * (sigma / sqrt(1.0 * n));

vector[p] lambda_tilde =

sqrt(c2) * lambda ./ sqrt(c2 + square(tau) * square(lambda));

}

We now put everything together in the model block.

model {

beta ˜ normal(0, tau * lambda_tilde);

lambda ˜ cauchy(0, 1);

c2 ˜ inv_gamma(2,8);

tau ˜ cauchy(0, tau0);

alpha ˜ normal(0, 2);

sigma ˜ cauchy(0, 1);

readscore ˜ normal(X * beta + alpha, sigma);

}

// For posterior predictive checking and loo cross-validation

generated quantities {

vector[n] readscore_rep;

vector[n] log_lik;

for (i in 1:n) {

readscore_rep[i] = normal_rng(alpha + X[i,:] * beta, sigma);

log_lik[i] = normal_lpdf(readscore[i] | alpha + X[i,:]

* beta, sigma);

}

}

"

10.6 Comparison of Regularization Methods

It may be of interest to run a side-by-side comparison of the regularization methods
in terms of their effects on parameter estimates and standard deviations and LOO
cross-validation. The comparison is displayed below in Table 10.1. Bayesian linear
regression with non-informative priors using the standardized data is given under
the BLR column for comparison purposes.
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190 Bayesian Statistics for the Social Sciences

TABLE 10.1. Comparison of posterior results based on different regularization
methods

Ridge Lasso Horseshoea Reg. horseshoeb

Variable Parameter Mean (SD) Mean (SD) Mean (SD) Mean (SD)
Intercept alpha −0.04 (0.12) −0.05 (0.12) −0.01 (0.10) −0.01 (0.10)
FEMALE beta1 0.08 (0.16) 0.08 (0.17) 0.02 (0.10) 0.02 (0.10)
ESCS beta2 0.27 (0.09) 0.28 (0.09) 0.24 (0.10) 0.23 (0.10)
METASUM beta3 0.37 (0.08) 0.36 (0.08) 0.33 (0.09) 0.33 (0.09)
PERFEED beta4 −0.10 (0.10) −0.10 (0.10) −0.05 (0.08) −0.05 (0.07)
JOYREAD beta5 0.10 (0.09) 0.09 (0.10) 0.07 (0.08) 0.06 (0.08)
MASTGOAL beta6 −0.20 (0.08) −0.19 (0.09) −0.14 (0.09) −0.13 (0.09)
ADAPTIVITY beta7 −0.05 (0.11) −0.04 (0.11) −0.02 (0.07) −0.02 (0.06)
TEACHINT beta8 0.03 (0.09) 0.02 (0.09) 0.00 (0.06) 0.00 (0.06)
SCREADDIFF beta9 −0.13 (0.10) −0.13 (0.10) −0.11 (0.09) −0.10 (0.09)
SCREADCOMP beta10 0.18 (0.10) 0.17 (0.10) 0.11 (0.09) 0.13 (0.10)
Residual sigma 0.83 (0.06) 0.83 (0.06) 0.83 (0.06) 0.83 (0.06)
LOO-ICc 258.1 (12.4) 258.0 (12.4) 256.9 (12.1) 257.1 (11.9)

a 262 divergent transitions generated after warmup.
b 29 divergent transitions generated after warmup.
c Value in parentheses are LOO-IC standard errors.

First, note that the horseshoe and regularized horseshoe methods generated a
warning of divergent transitions after warmup. This message needs to be taken
seriously and implies that the complexity of the model is such that the HMC/NUTS
algorithm cannot pick up small changes in the curvature of the log posterior. As
such, the estimates may be biased. A possible solution to this problem is to adjust
the alpha delta setting to beyond the default of 0.99 and max treedepth setting
to beyond the default value of 12, and of course to check the model and priors.
For this example, we set adapt delta=.9999 and max treedepth=20 and still had
divergent transitions. Generally speaking, however, if other diagnostics such as
n eff and Rhat look good, then one can proceed to interpret the results, albeit
with caution. For more information on Stan program warnings, see https://
mc-stan.org/misc/warnings.html.

With this caveat in mind, a visual inspection of the results in Table 10.1 in-
dicates that the ridge and lasso priors provide results that are somewhat similar
to Bayesian linear regression with non-informative priors that we found in Table
5.1 (when standardized). On the other hand, the original horseshoe prior and
regularized horseshoe achieve slightly more shrinkage in the posterior estimates
and standard deviations with the regularized horseshoe yielding the most shrink-
age, and indeed shrinking some of the larger coefficients (e.g., beta2 and beta3), as
expected. In terms of cross-validation, however, we find that the horseshoe prior
yields the lowest value of the LOO-IC followed closely by the regularized horse-
shoe. A comparative analysis of this kind might be worthwhile in practice if the
goal of the analysis is not only variable selection but also comparative predictive
performance.
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Bayesian Variable Selection and Sparsity 191

10.6.1 An Aside: The Spike-and-Slab Prior

In this chapter, we did not demonstrate the so-called spike-and-slab prior, which
has been considered the ”gold standard” for sparsity for quite some time (Mitchell
& Beauchamp, 1988; E. I. George & McCulloch, 1993). However, in the interest of
completeness, we should say a brief word about it.

The spike-and-slab prior gets its name because the prior distribution on the in-
dividual regression coefficients come from a two-component mixture of Gaussian
distributions and can be written as

βp | λp, c, ϵ ∼ λpN(0, c2) + (1 − λp)N(0, ϵ2) (10.7a)
λp ∼ Bernoulli(π) (10.7b)

where λp ∈ {0, 1} is an indicator variable that determines whether the coefficient is
close to zero, in which case it comes from the spike (λp = 0), or nonzero, in which
case it comes from the slab (λp = 1). To create a spike, it is common to set ϵ = 0.
The slab width c and the inclusion probability π of the Bernoulli random variable
is set by the user. Notice that with ϵ = 0 the spike and slab prior can be rewritten
as

βp | λp, c ∼ λpN(0, c2λ2) (10.8a)
λp ∼ Bernoulli(π) (10.8b)

The result of this setup is that λ is a discrete parameter that only takes on two
values (λp = 0, 1).

It is necessary to note that Stan cannot incorporate discrete parameters. How-
ever, studies have shown the similarity in performance between the spike-and-slab
prior and the horseshoe prior (see, e.g., Carvalho et al., 2010; Polson & Scott, 2011).
Finally, the spike-and-slab prior is similar to the regularized horseshoe prior when
the slab width c < ∞, thus providing some regularization on large coefficients.

10.7 Summary

This chapter considered the problem of Bayesian variable selection and spar-
sity. Many variable selection methods can be implemented in the frequentist and
Bayesian framework, and some are explicitly Bayesian. However, both simulation
studies and real data analyses seem to point to the original horseshoe prior or
regularized horseshoe prior as the preferred methods for inducing sparsity, par-
ticularly with respect to out-of-sample predictive performance. As usual, in the
case of large sample sizes, application of sparsity-inducing priors will likely lead
to similar conclusions. Nevertheless, it may be prudent to examine results using
different priors and choose the model that yields desirable shrinkage along with
acceptable out-of-sample predictive performance.

In the end, however, a single model is selected for interpretation, and although
the predictive performance of Bayesian shrinkage methods is often better than
regression modeling without inducing sparsity, these methods do not account
for the uncertainty that underlies the choice of a single model. An approach
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to addressing the problem of model selection is simply not to choose a single
model but to carefully average over the space of possible models that could have
generated the data. The next chapter takes up the problem of model uncertainty.
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