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It is both a pleasure and honor to introduce the fifth edi-
tion of this book. Like the previous editions, structural 
equation modeling (SEM) is presented in an acces-
sible way for readers without strong quantitative back-
grounds. Included in this edition are many new exam-
ples of SEM applications in disciplines that include 
health, political science, international studies, cognitive 
neuroscience, developmental psychology, sport and 
exercise, and psychology, among others. Some exam-
ples were selected due to technical problems in the anal-
ysis, but such examples provide a context for discussing 
how to deal with challenges that can and do occur in 
SEM, especially in samples that are not large. So not all 
applications of SEM described in this book are trouble 
free, but neither are actual research problems.

WHAT’S NEW

The many changes in this edition are intended to 
enhance the pedagogical presentation and cover recent
developments. The biggest changes are summarized 
next:

1. The fourth edition of this book was one of the
first introductory works to incorporate Judea Pearl’s 
nonparametric approach to SEM, also called the struc-

tural causal model (SCM), into the larger SEM fam-
ily that dates to the development of path analysis by 
Sewall Wright in the 1920s–1930s and to the publica-
tion of LISREL III in 1976 as the first widely available 
computer program for covariance structure analysis, 
also called covariance-based SEM. In the same tradi-
tion, this fifth edition includes composite SEM, also 
referred to as partial least squares path modeling or 
variance-based SEM, as the third full member of the 
SEM family. Composite SEM has developed from a 
set of methods seen in the 1980s–1990s as more suit-
able for exploratory research that emphasized predic-
tion over explanation to a suite of full-fledged modeling 
techniques for exploratory or confirmatory analyses, 
including theory testing. Both the SCM and composite 
SEM offer unique perspectives on causal modeling that 
can benefit researchers more familiar with traditional, 
covariance-based SEM. This means that researchers 
acquainted with all three members of the SEM family 
can test a wider range of hypotheses about measure-
ment and causation. I try to make good on this promise 
throughout the fifth edition.

2. Traditional SEM and composite SEM are
described within Edward Rigdon’s concept proxy 
framework that links data with theoretical concepts 
through proxies, which approximate concepts based on 
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2 Introduction 

correspondence rules—also called auxiliary theory—
about presumed causal directionality between concepts 
and data. This point refers to the distinction between 
reflective measurement, where proxies for latent vari-
ables are common factors, and formative measurement, 
where proxies for emergent variables are composites of 
observed variables. The choice between the two mea-
surement models just mentioned should be based on 
theory, not by default due to the researcher’s lack of 
awareness about SEM techniques for analyzing com-
posites.

3. There are additional new chapters on SEM analy-
ses in small samples and recent developments in media-
tion analysis. Surveyed works about mediation analysis 
concern research designs and definitions of mediated
effects, including natural direct and indirect effects and 
interventional direct and indirect effects estimated in
clinical trials, among other topics. There is also cov-
erage of new reporting standards for SEM studies by 
the American Psychological Association (APA) and 
the technique of piecewise SEM, which is based on 
concepts from Pearl’s SCM. There are also extended 
tutorials on modern techniques for dealing with miss-
ing data, including multiple imputation and full infor-
mation maximum likelihood (FIML), and also about 
instrumental variable methods as a way to deal with
the confounding of target causal effects.

4. The topics of specification and identification ver-
sus analysis were described in separate chapters in the 
fourth edition. They are now combined into individual
chapters for each technique described in the fifth edi-
tion. I believe this more closely integrated presentation 
helps readers to more quickly and easily develop a sense 
of mastery for a particular kind of SEM technique.

5. There is greater emphasis on freely available soft-
ware for SEM analyses in this new edition. For exam-
ple, the R package lavaan package was used in most
analyses described in this book. It is a full-featured
computer program for both basic and advanced SEM 
analyses. It has the capability to analyze both common 
factors and composites as proxies for theoretical con-
cepts. The syntax in lavaan is both straightforward 
and used in some other R packages, including cSEM 
for composite SEM, to specify structural equation 
models, so it has application beyond lavaan.

Other R packages used for detailed examples in the 
fifth edition include semTools, piecewiseSEM, MBESS, 
MIIVsem, psych, WebPower, systemfit, sem, bmem, 

CauseAndCorrelation, dagitty, and ggm. Together with
the lavaan package, a wide variety of analyses for non-
parametric, parametric, and composite models in SEM 
is demonstrated, all with no-cost software. Commercial 
software for SEM is still described, including Mplus, 
which can feature state-of-the-art analyses before they
appear in other computer tools, but free SEM software 
is now nearly as capable as commercial products. Also, 
I would guess that free software could be used in the 
large majority of published SEM studies.

6. Extended presentations on regression fundamen-
tals, significance testing, and measurement and psy-
chometrics beloved by readers of the fourth edition are 
freely available in updated form as primers on the book’s 
website. This change was necessary to include the new 
material in the fifth edition. The topics just mentioned
are still covered in the new edition but in a more con-
cise way. New to the fifth edition in the main text is 
a self-test of knowledge about background concepts in 
statistics and measurement. There is a scoring key, too,
so readers can check their understanding of fundamen-
tals. Readers with higher scores could directly proceed 
to substantive chapters on SEM analyses, and readers 
with lower scores can consult any of the primers on the 
website for more information and exercises.

BOOK WEBSITE

The address for the book’s website is https://www.
guilford.com/kline-materials. From the site, you can 
freely access the computer files—data, syntax, and 
output files—for all detailed examples in this book. 
The website promotes a learning-by-doing approach. 
The availability of both syntax and data files means 
that readers can reproduce the analyses in this book 
by using the corresponding R packages. Even without 
doing so, readers can still open the output file on their 
own computers for a particular analysis and view the 
results. This is because all computer files are simple 
text files that can be opened with any basic text edi-
tor, such as Notepad (Windows), Emacs (Linux/
UNIX), or TextEdit (macOS), among others. Syn-
tax files are annotated with extensive comments. 
Even if readers use a different computer tool, such 
as  LISREL, it is still worthwhile to review the files 
on the website generated in the R environment. This 
is because it can be helpful to view the same analy-
sis from somewhat different perspectives. Some of the 
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  Introduction 3

exercises for this book involve extensions of the analy-
ses for these examples, so there are plenty of opportuni-
ties for practice with real data sets.

PEDAGOGICAL APPROACH

Something that has not changed in the fifth edition 
is pedagogical style: I still speak to readers (through 
my author’s voice) as one researcher to another, not as 
statistician to the quantitatively naïve. For example, the 
instructional language of statisticians is matrix algebra, 
which conveys a lot of information in a short amount of 
space, but readers must already be versed in linear alge-
bra to understand the message. There are other, more 
advanced works about SEM that emphasize matrix 
presentations (Bollen, 1989; Kaplan, 2009; Mulaik, 
2009b), and these works can be consulted when you 
are ready. Instead, fundamental concepts about SEM 
are presented here in the language of applied research-
ers: words, tabular summaries, and data graphics, not 
matrix equations. I will not shelter you from some of 
the more technical aspects of SEM, but I aim to cover 
fundamental concepts in accessible ways that promote 
continued learning.

PRINCIPLES > SOFTWARE

You may be relieved to know that you are not at a dis-
advantage at present if you have no experience using 
an SEM computer tool. This is because the coverage 
of topics in this book is not based on the symbolism, 
syntax, or user interface associated with a particular 
software package. In contrast, there are many books 
linked to specific SEM computer programs. They can 
be invaluable for users of a particular program, but per-
haps less so for others. Instead, key principles of SEM 
that users of any computer tool must understand are 
emphasized here. In this way, this book is more like a 
guide to writing style than a handbook about how to use 
a particular word processor. Besides, becoming profi-
cient with a particular software package is just a matter 
of practice. But without strong conceptual knowledge, 
the output from a computer tool for statistical analy-
ses—including SEM—may be meaningless or, even 
worse, misleading.

SYMBOLS AND NOTATION

Advanced works on SEM often rely on the symbols 
and notation associated with the original matrix-based 
syntax for LISREL, which features a profusion of dou-
bly subscripted lowercase Greek letters for individual 
model parameters, uppercase Greek letters for matrices 
of parameters for the whole model, and two-letter acro-
nyms in syntax for matrices. For example, the symbols

 ( )
12

x , x, and LX

refer in LISREL notation to, respectively, a specific 
loading on an exogenous (explanatory) factor, the 
parameter matrix of loadings for all such factors, and 
LISREL syntax that designates the matrix (Lambda-
X). Although I use here and there some symbols from 
LISREL notation, I do not oblige readers to memorize 
LISREL notation to get something out of the book. 
This is appropriate because LISREL symbolism can be 
confusing unless one has learned the whole system by 
rote.

ENJOY THE RIDE

Learning a new set of statistical techniques is not every-
one’s idea of fun. (If doing so is fun for you, that’s okay, 
I understand and agree.) But I hope the combination 
of accessible language that respects your intelligence, 
examples of SEM analyses in various disciplines, free 
access to background tutorials (i.e., the primers) and 
computer files for detailed examples, and the occa-
sional bit of sage advice offered in this book will help to 
make the experience a little easier, perhaps even enjoy-
able. It might also help to think of this book as a kind of 
travel guide about language and customs, what to know 
and pitfalls to avoid, and what lies just over the horizon 
in SEM land.

PLAN OF THE BOOK

Part I introduces fundamental concepts, reporting 
standards, preparation of the data, and computer tools. 
Chapter 1 lays out both the promise of SEM and wide-
spread problems in its application. Concepts in regres-
sion, significance testing, and psychometrics that are 
especially relevant for SEM are reviewed in Chapter 
2, which also include the self-test in these areas. Basic 
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steps in SEM and reporting standards are introduced 
in Chapter 3 along with an example from a recent 
empirical study. How to prepare the data for analysis in 
SEM and options for dealing with common problems, 
including missing data, are covered in Chapter 4, and 
computer tools for SEM, both commercial and free, are 
described in Chapter 5.

Part II deals with the fundamentals of hypothesis 
testing in SEM for classical path models, which in the 
analysis phase feature a single observed measure for 
each theoretical variable, also called single-indicator 
measurement. It begins in Chapter 6, which introduces 
nonparametric SEM as described by Judea Pearl (i.e., 
the SCM). The SCM is graphical in nature; specifically, 
causal hypotheses are represented as directed graphs
where theoretical variables are depicted with no com-
mitment to any distributional assumptions or specific 
operational definitions for any variable. Graphs in non-
parametric SEM can be analyzed by special computer 
tools without data. This capability allows researchers 
to test their ideas before collecting the data. For exam-
ple, the analysis of a directed graph may indicate that 
a particular causal effect cannot be estimated unless 
additional variables are measured. After the data are 
collected, it is a parametric model that is typically 
analyzed, and such models and their assumptions are 
described in Chapter 7. The technique of piecewise 
SEM, which connects the two perspectives, nonpara-
metric and parametric, through novel techniques for 
analyzing path models, is covered in Chapter 8.

Chapters 9–12 are perhaps the most important ones 
in the book. They concern how to test hypotheses and 
evaluate models in complete and transparent ways that 
respect both reporting standards for SEM and best 
practices. These presentations are intended as counter-
examples to widespread dubious practices that plague 
many, if not most, published SEM studies. That is, the 
state of SEM practice is generally poor, and one of my
goals is to help readers distinguish their work above 
this din of mediocrity. Accordingly, Chapter 9 outlines 
methods for simultaneous estimation of parameters in
structural equations models and explains how to ana-
lyze means along with covariances. Chapter 10 deals 
with the critical issue of how to properly assess model 
fit after estimates of its parameters are in hand. A criti-
cal point is that model fit should be routinely adjudged 
from at least two perspectives: global or overall fit, and 
local fit at the level of residuals, which in SEM con-
cerns differences between sample and predicted asso-

ciations for each pair of measured variables. Chapters 
11–12 extend these ideas to, respectively, the compari-
son of alternative models all fit to the same data and 
the simultaneous analysis of a model over data from 
multiple groups, also called multiple-group SEM.

Part III deals with the analysis of models where at 
least some theoretical concepts are approximated with
multiple observed variables, or multiple-indicator mea-
surement. Such models are often referred to as “latent 
variable models,” but for reasons explained in Chapter 
13, our models include only proxies for latent variables, 
not latent variables themselves. These proxies are of
two general types: common factors based on reflective 
measurement models and composites based on forma-
tive measurement models. The analysis of pure reflec-
tive measurement models in the technique of confirma-
tory factor analysis (CFA) is described in Chapter 14, 
and Chapter 15 deals with the analysis of structural
regression (SR) models—also called latent variable
path models—where causal effects between observed
variables or common factors are estimated. Chapter 16
is about composite SEM, which analyzes causal models 
with multiple-indicator measurement based on forma-
tive, not reflective, measurement and where proxies for 
conceptual variables are composites, not common fac-
tors. Application of the technique of confirmatory com-
posite analysis (CCA), the composite analog to CFA, is 
demonstrated.

Part IV is about advanced techniques. How to deal 
with SEM analyses in small samples is addressed in 
Chapter 17, and Chapter 18 concerns the analysis of 
categorical data in CFA. Chapter 19 explains how to 
analyze nonrecursive models with causal loops that 
involve two or more endogenous (outcome) variables 
assumed to influence each other, and Chapter 20 sur-
veys recent developments that enhance, improve, and 
extend ways to assess hypotheses of causal media-
tion, or indirect causal effects that involve at least one 
intervening variable. The state of mediation analysis 
in the literature is problematic, but some of the newer 
approaches and methods described in this chapter seem 
promising. The analysis of latent growth models for 
longitudinal data is the subject of Chapter 21, and the 
application of multiple-group CFA to test hypotheses 
of measurement invariance is dealt with in Chapter 
22. The capstone of the book is the summary of best
practices in SEM in Chapter 23. Also mentioned in this
chapter are common mistakes with the aim of helping
you to avoid them.
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RATIONALE OF LOCAL ESTIMATION

In local estimation, the researcher conducts a series of 
regression analyses, one for each outcome variable in 
the model. A suitable regression technique should be 
used for a particular outcome. This means that

1. The link function, which associates a linear com-
bination of predictors to a parameter for the distri-
bution of the outcome, is appropriate, given the data 
type of the outcome (e.g., count, ordinal, or binary 
data).

2. Distributional assumptions of the technique, if any,
should be plausible.

3. Functional forms of statistical associations between
predictors and outcomes are properly specified in
parametric methods, or nonparametric methods
are used that do not assume a particular functional
form (Appendix 7.1).

For example, ordinary least squares (OLS), or stan-
dard multiple regression (identity link), is for continu-
ous outcomes with linear relations to all predictors. 
Curvilinear relations can also be estimated if the com-
puter is instructed to include in the equation polyno-
mial terms, such as X2 for quadratic effects of X, along 
with variable X itself (Appendix 7.1). Normal distribu-
tions for observed scores are not required in the OLS 
method, but distributions of residuals for cases should 
be normal. Dichotomous outcomes could be analyzed 
in logistic regression (logit link) or probit regression 
(probit link), among other options for binary regression, 
and outcomes that are count variables could be ana-
lyzed in Poisson regression (log link), and so on. The 
point is that there should a be a good match between the 
distributional assumptions and types of functional rela-
tions estimated in a particular regression technique and 
the outcome analyzed with its presumed causes.

Potential advantages of local estimation are listed 
next (Bollen, 2019; Lefcheck, 2016; Shipley, 2000):

8

Local Estimation and Piecewise SEM

There are two broad families of estimation methods in SEM, local and global. In local estimation—
also called limited‑information methods, partial‑information methods, or single‑equation
methods—equations for endogenous variables are analyzed one at a time. Conceptually, (1) the full 
model is decomposed into a series of submodels, one for each outcome; and (2) presumed causal effects 
for each outcome are estimated in separate regression analyses. In global estimation, the whole model 
is analyzed all at once; that is, equations for all outcomes and their presumed causes are simultaneously 
estimated. Until recently, (1) local estimation in SEM was mainly restricted to manifest-variable path analysis 
models, and (2) global estimation was the sole practical choice for models with common factors as proxies 
for latent variables. But the availability of relatively new computer tools for local estimation of path models 
has expanded analysis options for both types of models just mentioned. This chapter covers local estimation 
for manifest-variable path models and the related method of piecewise SEM. options for local estimation or 
global estimation of models with common factors are covered in later chapters.
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118 SPECIfICATIoN, ESTIMATIoN, AND TESTING  

1. No specialized software is needed. This is 
because local estimation can be conducted using soft-
ware for general statistical analyses, such as SPSS, 
SAS/STAT, or native regression procedures in R, such 
as function “lm( )” (linear regression models) for con-
tinuous outcomes.

2. Local estimation accommodates a wide range of 
variable types and distributions, and it also allows the 
use of parametric or nonparametric regression meth-
ods. Thus, no universal requirements or assumptions, 
such as multivariate normality, necessarily apply over 
the analyses for all outcome variables.

3. Local estimation may be less susceptible to prop-
agation of specification error compared with global 
estimation. Because each outcome is separately ana-
lyzed in local estimation, effects of specification error 
for one outcome may not spread to different outcomes 
with correctly specified equations.

4. Global estimation methods are typically asymp-
totic; that is, they require large samples for precise esti-
mation. They also require statistically identified mod-
els; otherwise, estimation may fail. In contrast, local 
estimation is generally less demanding about sample 
size, and it may be possible in local estimation to gen-
erate estimates for individual outcomes even though the 
whole model is not identified.

5. The availability of significance tests of overall 
model fit was once the near-exclusive domain of global 
estimation, but there are now computer tools that con-
duct global fit testing in the context of local estimation, 
too. For observed-variable path models, these global fit 
tests are generally based on the concept of d-separation 
and simultaneously test all model-implied conditional 
independencies for a union basis set (Chapter 6). Such 
tests can be conducted without estimating a single 
model parameter; that is, d-separation tests can be con-
ducted prior to local estimation. Doing so is part of the 
rationale for piecewise SEM, which is described next.

PIECEWISE SEM

Shipley (2000) described the basic logic of piece-
wise SEM, also called confirmatory path analysis, 
for recursive path models with no causal loops and 
no correlated errors. The method was later expanded 
to include path models with correlated errors, multi-

level analysis of path models, comparison of alterna-
tive models fitted to the same data, evaluation of path 
models over multiple samples, and models with prox-
ies for latent variables (Shipley, 2003, 2009; Shipley 
& Douma, 2020, 2021). Lefcheck (2016) described the 
freely available piecewiseSEM package for the R com-
puting environment.

The basic steps of piecewise SEM for recursive path 
models with continuous outcomes with linear relations 
(Shipley, 2000) are summarized next:

1. The path model is expressed as a directed acyclic 
graph (DAG).

2. The union basis set of implied conditional indepen-
dencies is derived. Recall that the union basis set 
controls for all parents of each nonadjacent pair of 
variables, or those not directly connected by a path 
in the graph. It consists of the smallest number of 
nonoverlapping conditional independence claims 
that generate all such hypotheses encoded by the 
DAG.

3. In the data, calculate the value of the Pearson cor-
relation or partial correlation that corresponds to 
each implied conditional independency in the union 
basis set. Each of these coefficients is also a correla-
tion residual, or the difference between the observed 
(sample) correlation and the predicted value, which 
is zero (i.e., conditional independence). Correla-
tion residuals are measures of local fit because they 
involve a single pair of variables, not all variables in 
the model considered at once.

4. Next, for each observed correlation test the null 
hypothesis that the corresponding parameter equals 
zero against a nondirectional alternative hypoth-
esis. For example, if rXY•W is the sample coefficient 
for the implied conditional independence X ⊥ Y | W, 
then the null and alternative hypotheses are, respec-
tively,

 H0: rXY•W = 0 and H1: rXY•W ≠ 0

 Depending on the computer tool, the test statistic 
could be t (N – 2 – c), where c is the number of 
variables for which we are controlling (c = 1 in this 
example), or it could be the normal deviate z based 
on the Fisher transformation for correlation coeffi-
cients.

5. Conduct the d-separation (d-sep) test, which is a 
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  Local Estimation and Piecewise SEM 119

multivariate significance test of all implied condi-
tional independencies in the union basis set. The 
test statistic is C (Fisher, 1954), and its formula is

 
=

= − ∑
1

2 ln( )
k

i
i

C p  (8.1)

 where ln is the natural log transformation to base e 
(approximately 2.7182), and pi is the p value from 
each of the individual significance tests described 
in Step 4. The C statistic is distributed over random 
samples as central chi-square with df = 2k, where k 
is the number of independence claims in the union 
basis set. The null hypothesis tested by C is

 H0: pk×1 = 0k×1

 where pk×1 is the population vector of p values from 
the tests of all implied conditional independences 
and 0k×1 is the zero vector of the same dimension 
where all elements equal zero.

6. If the model fails the d-sep test (e.g., C is statis-
tically significant at p < .05), then the researcher 
may decide to respecify it. Model respecification is 
considered in more detail in a later chapter, but for 
now we will treat a failed d-sep test as indicating 
a potential problem with the original model. The 
d-sep test should also be conducted for any respeci-
fied model.

7. If the original model or any respecified version is 
eventually retained, the last step is to locally esti-
mate the equation for each outcome. Path coef-
ficients for presumed causal effects are generally 
identified through the specification of adjustment 
(conditioning) sets of covariates in the OLS method 
or through the specification of instruments in 
instrumental variables regression, such as the two-
stage least squares (2SLS) method.

Two elaborations are needed. First, the question of 
what is the minimally acceptable absolute correlation 
residual before concluding that an independence claim 
is deficient is not clearly specified in the works on piece-
wise SEM cited to this point. Statistical significance 
as the sole decision criterion (e.g., reject the model if 
p  <  .05 for the C statistic) is problematic because it 
ignores effect size and power. For instance, in a large 
sample, the test for a sample partial correlation that is 
close to zero, such as r = .002, could be statistically sig-

nificant, but this degree of departure from zero may be 
seen as negligible.1 A d-sep test based on partial corre-
lations that all differ trivially from zero could likewise 
be significant in a large sample. But in a small sample 
due to low power, the d-sep test may fail to be signifi-
cant even though some sample partial correlations are 
much larger, such as r = .20, which indicates a 100-fold 
greater departure from zero than r = .002.

Suggested next is a rule of thumb for interpret-
ing correlation residuals based more on an effect size 
perspective than on outcomes of significance testing: 
Absolute discrepancies between observed and pre-
dicted correlations that exceed .10 may signal apprecia-
ble model–data disagreement. This standard has been 
suggested for exploratory factor analysis (Pett et al., 
2003; Tabachnick & Fidell, 2013) and, in my judgment, 
it seems like a reasonable guideline when continuous 
variables are analyzed in SEM, too. Although it is dif-
ficult to say how many absolute correlation residuals 
> .10 is “too many,” the more there are, the worse the 
correspondence between model and data concerning 
implied conditional independencies. An example of 
considering effect size when conducting the d-sep test 
follows.

Suppose in a large sample that p = .001 for C sta-
tistic, so the model “fails” the d-sep test at a conven-
tional level of statistical significance. The researcher 
inspects the absolute values for the whole set of par-
tial correlations and finds that none exceeds .01. If 
these degrees of departure from zero are all consid-
ered unimportant, then the researcher could decide to 
ignore the failed d-sep test for the model. That is, the 
model is not rejected, given the relatively low mag-
nitudes of partial correlations even though the global 
significance test was failed. Now suppose in a small 
sample that a model “passes” the d-sep test (i.e., C is 
not significant) even though some, and perhaps most, 
absolute partial correlations exceed .10. Low power 
of the d-sep test could explain this pattern of results. 
Accordingly, the researcher could decide in this case 
to ignore the passed d-sep test (i.e., the model is not 
retained), given the magnitudes of the correlation 
residuals.

1 An alternative is to test correlation residuals for significance 
against nonzero values, such as .05 in absolute value or some 
other reasonably small value—see Thoemmes and Rosseel 
(2018) for more information and examples of R code that imple-
ment this type of test.
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120 SPECIfICATIoN, ESTIMATIoN, AND TESTING  

A second issue in piecewise SEM concerns local esti-
mation. The version of piecewiseSEM that I used in the 
upcoming detailed example permitted the specification 
of a single regression equation for each outcome, gener-
ally the one that includes all parents for a specific out-
come (Lefcheck, 2020). There may be other equations 
for the same outcome that feature different covariates or 
the inclusion of instruments for particular causal vari-
ables, but multiple equations for the same outcome can-
not be analyzed in a single execution (run) of the function 
“psem( ),” which is used in the piecewiseSEM package 
to specify the equations and fit them to the data. But it is 
not problematic to specify and analyze additional equa-
tions for the same outcome in regression analyses con-
ducted outside of the piecewiseSEM package.

DETAILED EXAMPLE

Let’s recap the ongoing example to this point: In Chap-
ter 6, we specified as a directed acyclic graph (DAG) the 
nonparametric version of the Roth et al. (1989) recur-
sive path model of illness in Figure 6.7. We analyzed 
the graph with a computer tool (analysis 1, Table 6.3) 
that generated the union basis set, or the smallest num-
ber of conditional independencies (5 in total) located 
by the d-separation criterion that (1) are mutually inde-
pendent; (2) imply all other conditional independen-
cies; and (3) include the parents of both variables in 
the conditioning (adjustment) set (Rules 6.1–6.2). The 
union basis set for the Roth et al. (1989) model is listed 
in Table 6.4. For example, the graph predicts that the 
fitness and stress outcomes are independent after con-
trolling for both of their parents, exercise and hardy.

For the same DAG in Chapter 6, we applied graphi-
cal identification criteria (analysis 2, Table 6.3) to gen-
erate (1) minimally sufficient adjustment sets of covari-
ates to estimate causal effects in ordinary least squares 
(OLS) regression (Rules 6.3–6.4) or in two-stage least 
squares (2SLS) regression with instruments or partial 
instruments (Rules 6.5–6.6). The results of these analy-
ses—see Table 6.5—provide a “roadmap” or analysis 
plan for local estimation in this chapter.

In Chapter 7, we specified the parametric version of 
the Roth et al. (1989) path model depicted using full 
McArdle–McDonald RAM graphical symbolism in 
Figure 7.5. We determined that the model is identified 
(Rules 7.3–7.4) and that the degrees of freedom are 
dfM = 5 (Rules 7.1–7.2), which exactly equals the size 
of the union basis set for this model (5). For continuous 

variables in linear recursive models, each element of the 
union basis set corresponds to a vanishing partial cor-
relation that can be compared with a sample partial cor-
relation coefficient. If the model is correctly specified, 
then the two values—predicted (zero) and observed—
should be similar with the bounds of sampling error or 
effect size (i.e., any discrepancy is considered trivial); 
otherwise, the model should not be retained.

Listed in Table 8.1 are the analyses, annotated 
script files, and R packages used in the piecewise 
SEM analysis of the Roth et al. (1989) parametric path 
model of illness in Figure 7.5. All files can be freely 
downloaded from this book’s website. The version of 
the  piecewiseSEM package used in this example (Lef-
check, 2020) could not read summary data (i.e., raw 
data input is required). So, I generated in analysis 1 a 
raw data file in comma separated values (.csv) format 
based on the summary statistics in Table 4.3 for the 
Roth et al. (1989) data set in a sample of N = 373. Spe-
cifically, I used the “kd( )” function in semTools (Jor-
gensen et al., 2022) for the Kaiser-Dickman algorithm 
(Kaiser & Dickman, 1962) to create raw scores for 373 
cases where variable descriptive statistics (covariances, 
means) exactly match those in Table 4.3 for the actual 
data. These generated raw scores were specified as the 
input data for the analyses 2–4 in Table 8.1.2

Partial Correlations 
and the d‑Separation Test
For analysis 2 in Table 8.1, I used the psych package 
(Revelle, 2022) and the piecewiseSEM package to 
calculate the sample partial correlation and p value 
for each of the five conditional independence claims 
in the union basis set and also to conduct the multi-
variate d-sep test for the whole model. Recall that 
sample (observed) partial correlations in these analy-
ses are also correlation residuals because they all cor-
respond to predicted values that are zero. The results of 
 analysis 2 are summarized in Table 8.2. There is one 
absolute correlation that is just .10 or more. This result, 
–.103 (shown in boldface in the table), is for the pair 
fitness and stress. The model implies that fitness and 
stress are independent, given exercise and hardy, but 

2 Note that “kd( )” generates a different set of raw scores each 
time it is run, but score descriptive statistics always exactly 
match those of target covariances and means. Thus, all analysis 
results described in this chapter are identical in any raw data so 
generated for this example.
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their observed residual differs by what I would consider 
to be worrisome. In Figure 7.5, there is a single back-
door path between fitness and stress:

 Fitness ← Exercise  Hardy → Stress

A possible specification error is that fitness and stress 
are related through paths omitted from the origi-
nal model. For instance, perhaps fitness affects stress 
( Fitness → Stress), or vice versa (Stress → Fitness). We 
will deal with respecification later, but we have already 
detected a local fit problem.

The value of the C statistic for the d-sep test cal-
culated for these data in the piecewiseSEM package 
is 19.521 (see the output file for analysis 2, Table 8.1). 

With a total of 5 conditional independence claims in 
the union basis set, the degrees of freedom are 5 × 2, 
or 10. For c2 (10) = 19.521, p = .034, so the model fails 
the d-sep test at the .05 level. Thus, there is covariance 
evidence against the model from the perspective of 
significance testing. The sample size here is not large 
(N  =  373), one absolute correlation exceeds .10 (for 
fitness and stress), and other absolute correlations are 
nearly as large (e.g., .089 for hardy and fitness)—see 
Table 8.2—so local fit problems are indicated from 
an effect size perspective, too. Exercise 1 asks you to 
calculate C for this analysis, given the p values for the 
partial correlations in Table 8.2.

Given the results to this point, I would reject the 
model as inconsistent with the data and thus begin the 

TABLE 8.1. Analyses, Script Files, and Packages in R for Piecewise SEM 
Analyses of a Recursive Path Model of Illness
Analysis Script files R packages

1. Generate unstandardized scores that 
exactly match sample covariances, means

roth-generate-scores.r semTools 
lavaan

2. Estimate and test implied conditional 
independencies

roth-d-sep-test.r piecewiseSEM 
psych

3. Local estimation of causal effects
a. Covariate adjustment (OLS) roth-effects-ols.r piecewiseSEM

b. Instruments (2SLS) roth-effects-2sls.r systemfit

4. Bootstrapped standard errors and 
confidence intervals for indirect effects

roth-bootstrap-ci.r bmem 
sem

Note. The external raw data file created in analysis 1 is roth.csv. Output files have the same names except 
the extension is “.out.” Packages semTools and lavaan are also used in analyses 2–4. OLS, ordinary least 
squares; 2SLS, two-stage least squares.

TABLE 8.2. Sample Partial Correlations and p 
Values for a Union Basis Set of Implied Conditional 
Independencies for a Recursive Path Model of Illness
Conditional independence Adjustment set Partial correlation p

Exercise ⊥ Stress Hardy –.058 .260

Exercise ⊥ Illness Fitness, Stress  .039 .455

Hardy ⊥ Fitness Exercise  .089 .087

Hardy ⊥ Illness Fitness, Stress –.081 .118

Fitness ⊥ Stress Exercise, Hardy –.103 .048

Note. The p values are for two-tailed tests that the population correlation is zero.
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respecification phase. But in this pedagogical example, 
we continue next to local estimation using two different 
methods, covariate selection with estimation in OLS 
regression and estimation with instruments in 2SLS 
regression. Doing so gives us the opportunity to appre-
ciate that multiple estimators for the same causal effect 
may be available in local estimation of path models.

Estimates of Direct Causal Effects
I used the piecewiseSEM package for analysis 3a in 
Table 8.1 to generate the OLS estimators of unstan-
dardized direct effects in the Roth et al. (1989) path 
model that are listed in the second and third columns of 
Table 8.3 and shown in boldface. These results control 
for the parents of each outcome.. Because there are no 
causes of fitness other than exercise and also no back-
door paths between these two variables—see Figure 
7.5—the adjustment set is empty (i.e., no covariates). 
This means that the bivariate regression of fitness on 
exercise is the sole OLS estimator for this effect. The 
unstandardized coefficient is .108 (see the table), which 
indicates that fitness is expected to increase by .108 
points in its raw score metric, given a 1-point increase 
in the raw score metric of exercise. Exercise 2 asks you 
to interpret the unstandardized OLS coefficient for the 
direct effect of hardy on stress.

There are a total of three OLS estimators for the 
unstandardized direct effect of fitness on illness, each 
with a different adjustment set (see Table 8.3). Their 
values are generally consistent and range from –1.036 
when controlling for exercise to –.849 when control-
ling for stress, the other parent of illness in the origi-
nal model (Figure 7.5). The result just mentioned says 
that for every 1-point increase in fitness, there is an 
expected decline in illness of .849 points while hold-
ing stress constant. There are also a total of three esti-
mators for the unstandardized direct effect of stress on 
illness, each with just one of the variables fitness, exer-
cise, or hardy as the adjustment set (Table 8.3). Values 
of these alternative estimators are all positive and gen-
erally consistent. Exercise 3 asks you to interpret the 
OLS coefficient for the direct effect of stress on illness 
while controlling for fitness, the other parent of illness.

Reported in the fourth and fifth columns in Table 8.3 
are the 2SLS estimates of unstandardized direct effects 
in the Roth et al. (1989) path model. These results are 
inconsistent or plainly anomalous for some effects, and 
thus problematic. For example, the estimate for the 
direct effect of exercise on fitness is negative, or –.646 
(i.e., more exercise, less fitness) when the instrument is 
hardy, but the coefficient for the same direct effect is 
positive, or .719 (i.e., more exercise, more fitness) when 
the instrument is stress. There is a similar inconsistent 

TABLE 8.3. Unstandardized Local Estimates for Direct Effects in a Recursive 
Path Model of Illness

Effect

OLS 2SLS

Estimate Adjustment set Estimate Instrument

Exercise → Fitness   .108 (.013) — –.646 (1.377) 
.719 (.687)

Hardy 
Stress

Hardy → Stress  –.203 (.045) —  1.469 (3.252) 
–1.637 (1.240)

Exercise 
Fitness

Fitness → Illness  –.849 (.162) 
–1.036 (.183) 
 –.951 (.168)

Stress 
Exercise 
Hardy

–.558 (.443) 
–6.927 (8.533)

Exercise | Stress 
Hardy | Stress

Stress → Illness   .574 (.089) 
  .628 (.091) 
  .597 (.093)

Fitness 
Exercise 
Hardy

88.191 (5,980.901) 
1.180 (.431)

Exercise | 
Fitness 

Hardy | Fitness

Note. OLS, ordinary least squares; 2SLS, two-stage least squares. Adjustment sets are minimally sufficient. 
Standard errors are reported in parentheses. Values in boldface for OLS estimates control for parents of each 
outcome, and values in italic boldface for 2SLS estimates are contradictory in sign for the same effect or out-
of-bounds (invalid).
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pattern of 2SLS estimates for the direct effect of hardy 
on stress depending on the instrument, exercise or fit-
ness (see the table). Both 2SLS estimators for the direct 
effect of fitness on illness are negative, but the magni-
tude of the result when the conditional instrument is

 Hardy | Stress

exceeds by more than 10-fold the magnitude of the esti-
mate when the conditional instrument is

 Exercise | Stress

or, respectively, –6.927 versus –.558 (Table 8.3). 
Finally, the standard error for the 2SLS estimate of the 
direct effect of stress on illness, or 5,980.901, is so large 
compared with the observed standard deviation of the 
illness variable (62.48; Table 4.3) that no meaningful 
interpretation seems possible (i.e., it is out-of-bounds, 
and thus invalid).

There are features of the Roth et al. (1989) data set 
that handicap estimation with instrumental variables. 
For instance, the sample correlation between exercise 
and hardy is practically zero (r = –.03; Table 4.3), so 
these variables would be weak instruments for one 
another. Another example is that the conditional instru-
ment

 Exercise | Stress

is essentially unrelated to stress (r = –.001) and, thus, 
it is a weak instrument when estimating the coefficient 
for the direct effect of stress on illness (the estimate was 
invalid; see Table 8.3). Given these problems, estima-
tion with the 2SLS method is not pursued further in 
this example.

Disturbance Variances
The second column of Table 8.4 lists the observed 
variances (s2) for the outcome variables fitness, stress, 
and illness, and the third column lists the values of R2 
where the predictor variables are the parents of each 
outcome. Proportions of explained variation range 
from .053 for stress to .177 for illness. The standardized 
disturbance variances are calculated as 1 – R2, or the 
proportion of variance not explained, for each outcome. 
For example, R2 = .152 for fitness, 1 – .152 = .848, so 
exercise does not explain .848 of the total variation in 
fitness.3 Unstandardized disturbance variances are cal-
culated as (1 – R2) s2. For fitness, the unstandardized 
disturbance variance is calculated as .848 (338.56), or 
287.009. Exercise 4 asks you to interpret the results in 
Table 8.4 for illness.

Parametric Model Diagram 
with Estimates
Now we have unstandardized OLS estimates for all 
direct effects and disturbance variances in the Roth 
et al. (1989) path model. They are shown in their 
proper places in Figure 8.1(a) depicted in full McAr-
dle–McDonald RAM symbolism. Estimates for direct 
effects on illness control for both of its parents, stress 
and illness (Table 8.3). Because the variables exercise 
and hardy are exogenous, their variances and covari-
ances are also model parameters, but these values are 
just the corresponding descriptive statistics (Table 4.3).

Because not all measured variables in Figure 8.1(a) 
have the same raw score metric, values of unstandard-

3 Values of R2 adjusted for shrinkage could be substituted for 
unadjusted R2 in these calculations.

TABLE 8.4. Unstandardized Ordinary Least Squares Estimates 
of Disturbance Variances for a Recursive Path Model of Illness

Outcome s2 R2 1 – R2
Unstandardized 

estimate

Fitness   338.56 .152 .848   287.099

Stress 1,122.25 .053 .947 1,062.771

Illness 3,903.75 .177 .823 3,212.786

Note. The parent(s) of fitness, stress, and illness are, respectively, exercise, hardy, and both 
fitness and stress. The 1 – R2 values are the standardized estimates of disturbance variances.
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ized path coefficients, such as for direct effects on ill-
ness from fitness (–.849) and stress (.574), cannot be 
directly compared. This is not a problem for the stan-
dardized coefficients, which are presented in Figure 
8.1(b). For example, the standardized direct effect of 
fitness on illness is –.250, which says that for every 
increase in fitness of 1 standard deviation, the level of 
illness is expected to decline by .25 standard deviations 
while controlling for stress. The standardized direct 
effect of stress on illness is .308, so the level of illness 
is predicted to increase by about .30 standard devia-
tions for every increase in stress of 1 standard deviation 
while controlling for fitness. Because both results just 
mentioned are expressed in a common metric (standard 
deviation units), they can be directly compared: The 

absolute magnitude of the standardized direct effect of 
stress on illness exceeds that of fitness by about 23% 
(.308/.250 = 1.23). Exercise 5 asks you to interpret the 
standardized direct effects of exercise and hardy on 
their respective outcomes.

Figure 8.1(a) for the unstandardized estimates does 
not include regression intercepts, or values of predicted 
scores when scores on all predictors equal zero, for fit-
ness, stress, and illness, the outcome variables. (All 
intercepts are zero in the standardized solution.) Inter-
cepts are usually reported in output from regression 
computer procedures—see the output files for analy-
sis 3a for this example (Table 8.1)—and their values 
could be reported for each outcome along with those 
for unstandardized regression coefficients. In contrast, 

Exercise 

Hardy 

Illness 

DI 
1 

Stress 

DS 
1 

Fitness 

DF 
1 

.108 

4,422.250 

−.849 

287.099 

−75.810 

3,212.786 

1,440.000 

−.203 .574 

1,062.771 

(a) Unstandardized estimates 

Exercise 

Hardy 

Illness 

DI 
 

Stress 

DS 
 

Fitness 

DF 
 

.390 

−.230 

−.030 

1.000 

1.000 

−.250 

.308 

.848 

.947 

.823 

(b) Standardized estimates 

FIGURE 8.1. A recursive path model of illness with ordinary least squares estimates. Results for illness are based on both 
fitness and stress as parents.
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some SEM computer tools do not generate or print 
intercepts unless specifically instructed to do so, but 
we will consider this issue in the next chapter.

Indirect Effects
The fact that indirect effects do not automatically war-
rant interpretation as “mediation” in cross-sectional 
designs with no temporal precedence or a clear con-
ceptual time-ordering of cause, mediator, and outcome 
was discussed in Topic Boxes 6.1 and 7.1. For histori-
cal completeness, the four steps by Baron and Kenny 
(1986) for testing mediation are described in Topic Box 
8.1. Note that simply following the four steps does not 
by itself “prove” mediation. That is, analysis is insuf-
ficient to establish mediation without strong theory.

The direct effects of exercise and hardy on illness 
in the Roth et al. (1989) path model are both fixed to 
zero. Each presumed causal variable just mentioned 
has a single indirect effect on illness, exercise through 
fitness, and hardy through stress (Figure 8.1). Both of 
these indirect effects are also total effects, so they can 
be estimated in two different ways: (1) as products of 
coefficients from the direct effects that comprise each 
part of the whole indirect pathway, and (2) through 
covariate adjustment. Both types of estimates just men-
tioned are described next.

The second column of Table 8.5 gives the values of 
the product estimators for both indirect effects in the 
Roth et al. (1989) path model. The unstandardized 
estimate for the effect of exercise on illness through 
fitness is –.092, which equals the product of the two 
unstandardized coefficients for the two direct effects 
that make up the indirect pathway, or .108 (–.849) (see 
Figure 8.1(a)). Note that the second term of the product 
for the effect of fitness on illness, –.849, controls for 
stress, the other parent of illness. In words, the unstan-
dardized estimate for the indirect effect means that 
.092 is the expected decrease in illness in its raw score 
metric while holding exercise constant and increas-
ing fitness to whatever value it would attain under a 
one-point increase in the raw score metric of exercise 
(Pearl, 2009, pp. 355–358). This definition is actually 
counterfactual because it expresses what could happen 
(a decrease in illness), if a previous condition had been 
different (increasing fitness to the level it would be after 
an increase in exercise).

The standardized product estimator for the indirect 
effect of exercise on illness through fitness is –.099 
(Table 8.5). It is calculated as .390 (–.250), which is the 

product of the standardized coefficients for the direct 
effects that compose the indirect pathway (Figure 
8.1(b)). Thus, illness is predicted to decrease by .099 
standard deviations while keeping exercise constant 
and increasing fitness to the level it would be under an 
increase in exercise of a full standard deviation. Exer-
cise 6 asks you to reproduce the calculations for product 
estimators of the unstandardized and standardized indi-
rect effect of hardy on illness through stress reported in 
Table 8.5 and interpret both path coefficients. Note that 
indirect effects in the table are based on the direct effect 
of fitness on illness controlling for stress or on the direct 
effect of stress on illness controlling for fitness. There 
are other potential product estimators for direct effects 
of fitness and stress on illness that control for different 
variables—see the OLS estimates in Table 8.3. Thus, 
multiple product estimators for each indirect effect 
through fitness and stress are available in this example.

Because product estimators of indirect effects have 
complex distributions over random samples, it can be 
challenging to estimate their standard errors. The best-
known example of a method amenable to hand calcula-
tion for unstandardized indirect effects that involve just 
three variables is the Sobel approximate standard 
error (Sobel, 1982). Suppose that a is the unstandard-
ized coefficient for the direct effect X → W and that 
SEa is its standard error. Let b and SEb, respectively, 
stand for the same things for the direct effect W → Y. 
The product ab estimates the unstandardized indirect 
effect of X on Y through W, and its standard error is 
approximated as

 = +2 2 2 2
ab a bSE b SE a SE  (8.2)

Values of the Sobel standard errors for both unstan-
dardized indirect effects in the Roth et al. (1989) path 
model are reported in Table 8.5. Exercise 7 asks you 
to reproduce the calculations for the standard error of 
the unstandardized indirect effect of exercise on illness 
through fitness.

In large samples, the ratio z = ab/SEab is the Sobel 
test for the unstandardized indirect effect. A web page 
by K. Preacher automatically calculates the Sobel test.4 
The same calculator also gives results for the Aroian 
test and the Goodman test, each of which is based 
on somewhat different approximations of the standard 
error compared with the Sobel test. Specifically, the 
value of the Sobel standard error is smaller than the 

4 http://www.quantpsy.org/sobel/sobel.htm
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TOPIC BOX 8.1

Mediation: The Four Steps and Assumptions
Baron and Kenny (1986) described the application of multiple regression over four steps to estimate 
indirect effects among continuous variables. The steps were originally phrased in terms of statistical signifi-
cance, but that language was later changed to refer to zero versus nonzero coefficients. This is because 
coefficients that are trivially small can be significant in large samples while very large coefficients can fail 
to be significant in small samples (Kenny, 2021). This means that statistical significance is not a decision 
criterion when estimating indirect effects (or any other kinds of effects). The four steps listed next refer to 
figure 8.2, where X, M, and Y designate, respectively, the hypothesized cause, mediator, and outcome, 
and where a, b, c′, and c represent coefficients for direct effects between these variables:

1. The cause affects the outcome ignoring the mediator, that is, coefficient c in figure 8.2(a) is not 
zero.

2. The cause affects the mediator, that is, coefficient a in figure 8.2(b) is not zero.
3. The mediator affects the outcome controlling for the cause, that is, coefficient b in figure 8.2(a) is 

not zero.
4. To claim that the mediator is completely responsible for the relation between cause and outcome, 

coefficient c′ should be zero.

In figure 8.2(b), the product ab estimates the indirect effect of X on Y through M. The quantity ab + c′ esti-
mates the total effect of X on Y, or the sum of the direct and indirect effects of X. It also equals coefficient 
c in figure 8.2(a) where X is the sole cause of Y. for continuous variables,

 c – c′ = ab (8.3)

That is, the difference between the total effect of X in figure 8.2(a) ignoring M and the direct effect of X in 
figure 8.2(b) controlling for M equals the product estimator for the indirect effect. Equation 8.3 does not 
hold when Y is a binary outcome variable analyzed using logistic regression or probit regression. This is 

(continued)

(b)  Full model 

M X 

Y 

a 

b c′ 

(a)  No indirect effect 

X 

Y 

c 

FIGURE 8.2. Models for putative cause, mediator, and outcome variables, respectively, X, M, and Y. Partial model 
with no indirect effect (a). full model with direct and indirect effects (b).
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because the variance of the outcome variable is not fixed across the models in figures 8.2(a) and 8.2(b) 
analyzed in logistic or probit regression. In contrast, the scale in standard regression analyses for continu-
ous outcomes is constant over equations— see MacKinnon (2008, chap. 11) for more information and 
examples.

The requirement in Step 1 just listed that coefficient c should not be zero is problematic because it 
does not allow for inconsistent mediation—also called competitive mediation—where the signs 
of ab and c′ in figure 8.2(b) are different. In this case, the total effect c in figure 8.2(a) could be zero even 
though the size of the product estimator ab is appreciable. Suppose that

 a = –.50, b = .30, and c′ = .15

for figure 8.2(b). The indirect effect of X on Y through M is ab = –.50(.30) = –.15, which exactly cancels 
out the direct effect of X on Y, or .15, when the total effect is computed, or

 c = ab + c′ = –.15 + .15 = 0

The situation where the coefficients for the two constituent direct effects of an indirect effect for three vari-
ables (e.g., a and b in figure 8.2(b) have the same sign is called consistent mediation or comple‑
mentary mediation (Zhao et al., 2010).

James and Brett (1984) argued that Step 3 just listed should be modified by not controlling for the 
causal variable X in figure 8.2(b) when estimating coefficient b for the direct effect of the mediator, if the 
hypothesis involves complete mediation. This means that the cause is unrelated to the outcome when 
the mediator is held constant. If so, then including the cause adds nothing to the prediction of the outcome 
over what is already explained by the mediator (i.e., c′ = 0). Step 4 refers to the expectation for complete 
mediation. In contrast, partial mediation is indicated when c′ ≠ 0; that is, the mediator is not solely 
responsible for the observed association between cause and outcome. Because complete mediation is not 
always expected, though, there may be little harm in routinely controlling for the cause in Step 3 (Tate, 
2015).

In consistent mediation, controlling for the mediator weakens the association between the cause and 
outcome variables, or c′ < c in absolute value for figure 8.2. Suppression can be described as special 
cases of inconsistent mediation where controlling for the mediator strengthens the association between 
cause and outcome, or c′ > c in absolute value. That is, the relation between cause and outcome is 
strengthened by the mediator’s omission. In general, suppression is indicated when the indirect effect and 
the total effect have opposite signs (Rucker et. al., 2011). Another indication of suppression is when the 
magnitudes of the direct and indirect effects exceed that of the total effect (Lachowicz et al., 2018)—see 
MacKinnon et al. (2000) and Zhao et al. (2010) for more information.

Here is an example of suppression in an actual mediation study of demoralization in breast cancer 
patients after primary therapy (Peng et al., 2021): The variables are X = stress, M = demoralization, Y = 
psychological well-being estimated as common factors and

 a = .48, b = –.85, and c′ = .37

The indirect effect is ab = .48(–.85) = –.41, the total effect is –.41 + .37 = –.04, which is also the model- 
implied correlation between X and Y. Thus, the relation between stress and well-being increases from –.04 

(continued)
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Aroian standard error but larger than the Goodman 
standard error (e.g., MacKinnon et al., 2002, p.  85). 
Thus, it can happen that the same indirect effect is “sig-
nificant” in the Goodman test but “not significant” in 
the Sobel test or in the Aorian test. It can be difficult to 
know which outcome is correct in this case because all 
results are approximate. Thus, p values from the Sobel 
and related tests should not be overinterpreted (i.e., 
avoid dichotomania).

The Sobel test assumes normality, but distributions 
of product estimators are not generally normal; instead, 
such distributions are often asymmetrical with high 
kurtosis (MacKinnon et al., 2002). The test requires 
large samples, and p values in small samples can be 
very inaccurate. The test is restricted to unstandard-
ized indirect effects composed of just three variables. 
An alternative method is nonparametric bootstrapping, 
which does not assume normality. Nonparametric boot-
strapping can be applied to direct or indirect effects, 
and indirect effects can be composed of ≥ 3 variables. 

The method generates a bootstrapped confidence inter-
val for a particular effect. If the value of zero is not 
included within the bounds of a bootstrapped 95% con-
fidence interval, then the corresponding effect could be 
considered as “significant” at the .05 level for a non-
directional test. But if the confidence interval includes 
zero, then the effect could be considered as “not sig-
nificant.”

Of course, there is no requirement to interpret a con-
fidence interval as a significance test. This is because 
from the perspective of interval estimation, all values 
within a confidence interval are considered as basically 
equivalent within the limits of sampling error at a par-
ticular level of confidence (i.e., 1 – a). For example, if 
zero falls within the bounds of a confidence, it has no 
more special status than any numerical value contained 
by the interval.

Preacher and Hayes (2004) described macros for 
SPSS and SAS/STAT that generate bootstrapped con-
fidence intervals for unstandardized indirect effects 

ignoring demoralization to .37 after controlling for it. Without including demoralization in the analysis, a 
researcher could falsely conclude that stress and well-being are basically unrelated among these patients.

In too many mediation studies, researchers have uncritically followed the four-step method while 
applying statistical significance as basically the sole criterion for interpretation. The “logic” works like this: 
If the product estimator ab is “significant,” then variable M mediates at least part of cause X on outcome 
Y. But without also addressing assumptions, effect size, research design, and theory, the conclusion just 
stated is unwarranted; Zhao et al. (2010) described additional myths in mediation analysis. New develop-
ments in mediation analysis, outlined in Chapter 20, are making the four-step method ever more obsolete.

TABLE 8.5. Unstandardized and Standardized Estimates of Indirect Effects 
in a Recursive Path Model of Illness
Effect Product estimator Estimated as total effect Adjustment set

Exercise → Fitness → Illness –.092a (.021) –.099 –.080 (.048) –.085 
–.059 (.046) –.063

Hardy 
Stress

Hardy → Stress → Illness –.116b (.031) –.071 –.267 (.084) –.163 
–.231 (.081) –.140

Exercise 
Fitness

Note. The estimator is ordinary least squares for all results. Adjustment set is minimally sufficient when estimating each 
indirect effect as a total effect. Standard errors for product estimators are Sobel standard errors. Estimates are reported 
as unstandardized (standard error) standardized.
aBootstrapped 95% confidence interval is [–.131, –.053].
bBootstrapped 95% confidence interval is [–.195, –.065].
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  Local Estimation and Piecewise SEM 129

that involve just three variables. Preacher and Hayes 
(2008) described revised SPSS and SAS/STAT mac-
ros and also syntax for Mplus and LISREL that extend 
nonparametric bootstrapping methods to models with 
multiple intervening variables or indirect pathways 
composed of ≥ 3 variables. Hayes (2022) described 
PROCESS, a macro for R, SPSS, and SAS/STAT for 
analyzing a wide range of models with indirect effects 
based on nonparametric bootstrapping. There are also 
R packages that can generate bootstrapped confidence 
intervals for direct or indirect effects in path models. 
Examples include MBESS (Kelley, 2022), and bmem 
(Zhang & Wang, 2022), which also has extensive capa-
bilities for handling missing data in mediation studies 
(Zhang & Wang, 2013).

Confidence intervals or significance tests based on 
nonparametric bootstrapping are not magic. For exam-
ple, bootstrapped estimates can be severely biased in 
small samples, especially if sample distributions do not 
reflect population distributions. There are various cor-
rections for small sample bias (Dwivedi et al., 2017), 
but whether corrected estimates in a particular analysis 
are trustworthy is generally unknown. Also, values of 
the lower and upper bounds for a bootstrapped con-
fidence interval are potentially not unique unless the 
researcher specifies a seed, or the initial value of the 
random number generator used by the computer to 
select cases. Suppose for a particular seed that the value 
zero falls just inside the bounds of a 95% bootstrapped 
confidence interval, so the corresponding effect is “not 
significant” at the .05 level. The analysis is rerun except 
for a different seed, and the value zero now falls just 
outside the bounds of the second confidence interval. 
Now the same effect is “significant,” again at the .05 
level. This “disagreement” is not surprising because 
statistical results based on simulated random sampling 
are typically indeterminant (i.e., not unique).

Presented in the third and fourth columns of Table 
8.5 are results for the indirect effects of exercise and 
hardy on illness estimated as total causal effects through 
covariate adjustment (see also Table 6.5). For example, 
two different minimally sufficient sets identify the total 
effect of exercise on illness. The unstandardized and 
standardized estimators with hardy as the covariate 
are, respectively, –.080 and –.085, and the correspond-
ing estimators derived with stress as the covariate are, 
respectively, –.059 and –.063. Results across the three 
different estimators (including the product estimators) 
of the same indirect effect are generally similar: The 

unstandardized coefficients for the indirect effect of 
exercise on illness range from –.092 to –.059, and the 
standardized coefficients range from –.099 to –.063 
(see Table). Exercise 8 asks you to verify that outcomes 
of significance testing are not consistent over different 
estimators for the same indirect effect.

For analysis 4 in Table 8.1, I used the bmem package 
to generate bootstrapped 95% confidence intervals for 
estimates of all model parameters, but next we consider 
only results for the indirect effects. An advantage of 
bmem in this analysis is that it allowed the specification 
that direct effects of both exercise and hardy on illness 
are zero; that is, effects of these causal variables are 
solely indirect—see Figure 8.1. The method specified 
was the bias-corrected bootstrap, which adjusts for 
possible asymmetry in the empirical sampling distri-
bution by determining the proportion of bootstrapped 
estimates that fall below the observed result (Efron, 
1987). The default total of 1,000 generated samples 
was not changed in these analyses. The path model was 
specified for analysis in bmem using syntax from the 
sem package (Fox et al., 2022).

The bootstrapped estimate of the standard error for 
indirect effect of exercise on illness through fitness is 
.020, or very similar to the Sobel standard error for this 
effect (.021; see Table 8.5). The bootstrapped 95% con-
fidence interval is [–.131, –.053], and the corresponding 
point estimate is –.092—see Table 8.5. For the indi-
rect effect of hardy on illness through stress, the boot-
strapped standard error of .032 is just slightly larger than 
the Sobel standard error of .031 for this effect, and the 
bootstrapped 95% confidence interval is [–.195, –.065] 
for the point estimate of –.116. Neither bootstrapped 
confidence interval includes zero, so both point esti-
mates are statistically significant at the .05 level, but 
keep in mind the limitations of significance tests based 
on nonparametric bootstrapping considered earlier.

Whether any effect, indirect or otherwise, is sig-
nificant or not significant at some arbitrary level of a 
may be irrelevant, especially if the researcher empha-
sizes interval estimation and also considers whether 
observed effect sizes are large and precise enough to 
matter in a particular research area. In Chapter 20, 
which covers enhanced mediation analysis, you will 
learn about additional ways to describe the magnitudes 
of indirect effects. The next chapter concerns global 
estimation, and we will consider analysis results for the 
same model and data as covered in this detailed exam-
ple of local estimation.
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SUMMARY

In local estimation, the equation for just one outcome at 
a time is analyzed using a suitable regression method. 
It may be less susceptible to the propagation of speci-
fication error than global estimation. This means that 
if the equation for a particular outcome is wrong, then 
the error need not inevitably contaminate estimates for 
other outcomes. Local estimation is also the last step 
in the method of piecewise SEM. The initial steps are 
to (1) express a path model as a DAG; (2) derive the 
union basis set of conditional independencies implied 
by graph; (3) test each of these hypothesized indepen-
dence relations against sample data; and (4) conduct 
the multivariate d-separation test over all implied 
conditional independencies. A failed (i.e., significant) 
d-separation test signals covariance evidence against
the model, but effect size, or the empirical magnitudes
of departures from implied conditional independence,
should be considered, too. If either the original model
or a respecified version is retained, its parameters are
locally estimated. There may be multiple estimators for
some parameters, but their results should generally be

consistent; otherwise, a problem is indicated. Global 
estimation is introduced in the next chapter.

LEARN MORE

Shipley (2000) and Lefcheck (2016) outline the logic of 
piecewise SEM, and Zhao et al. (2010) classify types of 
mediated effects and caution against blindly applying the 
classical four-step method for testing mediation.

Lefcheck, J. S. (2016). piecewiseSEM: Piecewise structural 
equation modelling in R for ecology, evolution, and 
systematics. Methods in Ecology and Evolution, 7(5), 
573–579.

Shipley, B. (2000). A new inferential test for path models 
based on directed acyclic graphs. Structural Equation 
Modeling, 7(2), 206–218.

Zhao, X., Lynch, J. G., Jr., & Chen, Q. (2010). Reconsider-
ing Baron and Kenny: Myths and truths about media-
tion analysis. Journal of Consumer Research, 37(2), 
197–206.

EXERCISES

1. Calculate C for the d-sep test based on the results in
Table 8.2.

2. Interpret the OLS result in Table 8.3 for the direct
effect of hardy on stress.

3. Interpret the OLS result in Table 8.3 for the direct
effect of stress on illness, controlling for fitness.

4. Interpret the results in Table 8.4 for illness.

5. Interpret the standardized coefficients in Figure
8.1(b) for the direct effects of exercise and hardy on
their respective outcomes.

6. Calculate and interpret the product estimators
for the unstandardized and standardized indirect
effects of hardy on illness through stress, given the
coefficients in Figure 8.1.

7. In Table 8.5, the Sobel approximate standard error
for the unstandardized indirect effect of exercise on
illness through fitness is .021. Calculate this result
based on the information in Table 8.3.

8. Verify in Table 8.5 that outcomes of significance
tests for estimators of the unstandardized indirect
effect of exercise on illness through fitness are not
consistent.
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